ASTEEC Conference Proceeding: Computer Science
3™ International Conference on Information Science and Technology Innovation (ICoSTEC)
July 27, 2024, Yogyakarta, Indonesia

Analysis of Security Hotspots in Diploma 3
Information Technology Program's Final Project at
Del Institute of Technology

Hernawati Susanti Samosir'", Muhammad Anis Al Hilmi?", Yulanda Pasaribu®, Salomo Gemayel Josep
Sinambela’, Vivaldi Adventus Simangunsong®, Benyamin Sibarani', Yen Rylin Hutasoit!

Information Technology, Del Institute Of Technology
Sitoluama, Laguboti

Politeknik Negeri Indramayu,
Indramayu, West Java

lhernawati@del.ac.id

2alhilmil@gmail.com

lpasaribuyulanda94@gmail.com

lsalomogemayel@gmail.com

lvivadvent@gmail.com

lbenyaminsibarani2406@gmail.com

lyenrylin0l@gmail.com

*corresponding author

Abstract—

This research investigates security hotspots in Del Institute
of Technology students' final project particularly regarding the
implementation of the Model-View-Controller (MVC)
principles using PHP Laravel. A security hotspot was proposed
to find patterns in program code sections that could be hotspots
or possible vulnerabilities.

Some of security hotspot examples are misplacement of logic
in the view instead of the controller, improper handling of file
uploads in the controller, and various other errors. The research
generated through this methodology offers insights into
commonly overlooked vulnerable points in software
development practices. Additionally, the study includes an
analysis of 16 students' final projects, where data is collected,
and controller and blade files are separated. Subsequently, a
plugin accessible at
https://marketplace.visualstudio.com/items?itemName=MuhA
nisAlHilmi.laravel-php-codesniffer is executed. This plugin, a
result of previous research, is useful for assisting in secure

coding, detecting security indicators, and preventing
vulnerabilities.
Eight security hotspots are created to help detect

vulnerabilities in the code. Each line of code is then examined
to determine its compatibility with each previously established
security hotspot. Furthermore, we used a threshold of around
80% in this research based on IBM standards. The results will
be evaluated in terms of accuracy and F1 score, allowing for
the identification of which security hotspots are most frequently
encountered in student final projects. This research is expected
to contribute to the improvement of programming standards

and security practices in software engineering, providing a
better understanding for educators and developers.

Keywords— Security Hotspots, MVC Principles, PHP
Laravel, Vulnerabilities, Secure Coding Practices

I. INTRODUCTION

A security hotspot highlights a security-sensitive piece of
code that the developer needs to review. Upon review, you will
either find there is no threat, or you need to apply a fix to secure
the code [1]. Web applications containing high-severity
vulnerabilities was 66 percent in 2020 and 62 percent in 2021,
significantly more than in 2019 [2].

At Del Institute of Technology, there are still many students
who do not understand the use of hotspot security. Starting
from research that had been previously developed by Hilmi et
al. [3]. From that research it was stated that there was a plugin
that was proven very accurate in detecting security hotspots in
the program code. Therefore, the author collected program code
(PHP Laravel) from the first final projects of D3TI study
program’s students and then analysed the types of security
hotspots that were often carried out by these students. The hope
is that using this plugin can help developers find out how secure
the web application they are building is and will later become a
learning tool for creating program code that applies hotspot
security to the application they want to build.

mailto:6benyaminsibarani2406@gmail.com
mailto:6benyaminsibarani2406@gmail.com

Il. RELATED WORK

A.Security Hotspot Rules

In this section, we elaborate on the systematic approach applied
in developing detection rules for security vulnerabilities, along
with the evaluation metrics utilized to assess the effectiveness
of these rules. The detection of security vulnerabilities is
governed by eight key rules, as outlined in the set of security

vulnerability rules presented in Table 1.

Table 1. Detection rules
No | Rule Pattern
1 Disallow logic in | detect @if, @elseif, @else
blade file
2 Disallow detect string->id)
unencrypted id in
blade
3 Detect read-only | detect validate([detect rules()
string in blade return []
detect Validator::make()
detect controllerName::create()
4 Detect raw SQL detect readonly string
syntax in
controller and
blade
5 Detect raw SQL detect DB::raw, selectRaw(",
syntax in whereRaw(", havingRaw(",
controller and orderByRaw(", groupByRaw("
blade
6 Detect unescaped | detect {!!...!!}
string {!..11}in
blade
7 Detect upload file | detect T_VARIABLE->file(or
spot in controller | T_VARIABLE->image->
8 Disallow weak detect MD5/SHA1
hash in controller
and blade

The detection rules, as seen in Table 1, serve as the foundation
for identifying security vulnerabilities within the system. These
rules encompass various criteria and conditions indicative of

potential comprehensive

vulnerabilities,

providing a

framework for proactive security assessment.

C. Metric Evaluation

After detecting security vulnerabilities using the specified
rules, the next step involves applying evaluation metrics to
measure the system's performance. Evaluation metrics provide
a quantitative assessment of the accuracy, sensitivity, precision,
and overall effectiveness of the detection system. Four main
metrics are used for this purpose:

True Negatives (TN): Occurs when a security hotspot is not
detected according to the rule set, and upon manual inspection,
it is confirmed that no security hotspot occurred.
False Positives (FP): Occurs when a security hotspot is
detected according to the rule set, but upon manual inspection,
it is confirmed that no security hotspot occurred.
False Negatives (FN): Occurs when a security hotspot is not
detected according to the rule set, but upon manual inspection,
it is confirmed that a security hotspot did occur.
True Positives (TP): Occurs when a security hotspot is
detected according to the rule set, and upon manual inspection,
it is confirmed that a security hotspot did occur.

The collected data, representing the counts of TN, FP, FN, and
TP, is used to calculate the following evaluation metrics:

Accuracy: Overall precision of the detection system, calculated
as(TN+TP)/ (TN + FP + FN + TP).

True Positive Rate (TPR): Also known as Sensitivity or Recall,
measures the proportion of actual security hotspots correctly
identified, calculated as TP/ (TP + FN).

False Positive Rate (FPR): Evaluates the level of false alarms,
calculated as FP / (FP + TN).

Precision: Precision metric measures the accuracy of positive
security hotspot predictions, calculated as TP / (TP + FP).

Recall: Similar to TPR, emphasizes the system's ability to
identify actual positives, calculated as TP/ (TP + FN).

F1 Score: Providing a balanced assessment of system
performance, calculated as 2 * (Precision * Recall) / (Precision
+ Recall).

Through the application of these evaluation metrics,
researchers can acquire in-depth insights into the strengths and
weaknesses of the security vulnerability detection system,
thereby facilitating refinement and continuous improvement.

Extensive research has focused on investigating security
weaknesses in web applications, including those that depend on
PHP-based frameworks. Articles [4] and [5] support the early
identification of weaknesses, with [4] specifically highlighting
the use of machine learning methods to predict vulnerable
elements. Khan's groundbreaking publication in 2022 [6] offers
a comprehensive examination of secure software engineering.
It outlines essential elements such as measurements, tools,
standards, and research areas that are vital for creating robust
software applications. Zhao [5] presents a new methodology
that combines dynamic and static analysis to improve the
efficiency of discovering security vulnerabilities in PHP online
applications. These studies emphasize the crucial significance
of discovering and reducing security vulnerabilities in software
development, specifically in PHP Laravel projects.

Expanding on previous research, particularly the study titled "A
Static IDE Plugin to Detect Security Hotspots for Laravel
Framework-Based Web Applications™ by Hilmi et al. [3], this
current study utilizes a widely recognized plugin known for its
precision in identifying security weaknesses in program code.
This research highlights the effectiveness of the plugin in
helping developers identify vulnerabilities and follow secure
coding practices, hence strengthening the integrity and
resilience of PHP Laravel projects.

This study further investigates security vulnerabilities in the
final projects of Del Institute of Technology students,
specifically examining the implementation of Model-View-
Controller (MVC) principles using PHP Laravel. The research
aims to reveal typical vulnerabilities and faults in software
development methods by examining 16 student projects and
utilizing the previously described plugin. This will bring
attention to disregarded aspects of software development. The
study aims to assess the frequency and significance of
identified security hotspots for project integrity by
implementing eight security hotspots and using a threshold of
around 80% according to IBM standards. The results of this
inquiry are expected to enhance programming standards and
strengthen security protocols in software engineering, therefore
promoting a more comprehensive knowledge among educators
and developers.

Furthermore, the research is consistent with the wider
discussion on secure software engineering techniques. Paper
[4] and [5] promote the implementation of proactive strategies
to detect and address vulnerabilities, emphasizing the crucial
importance of ongoing enhancement in software security.
Khan's extensive framework [6] offers a clear plan for
incorporating security issues into the software development
lifecycle, highlighting the importance of a comprehensive
approach to safe software engineering. Similarly, Zhao's novel
framework [5] emphasizes the significance of utilizing both
dynamic and static analysis to improve the efficiency of
vulnerability detection techniques in PHP online applications.

To summarize, the compilation of previous studies emphasizes
the pressing requirement to tackle security weaknesses in web
applications, namely those created utilizing PHP Laravel
frameworks. Developers can strengthen the security of software
systems by using advanced tools and procedures, like the IDE
plugin mentioned in Hilmi's research [3]. These tools help
developers find and fix security vulnerabilities, making the
software more resistant to possible attackers. The area of secure
software engineering is constantly evolving through
collaborative efforts and continuous research activities. This
progress leads to improved security practices and strong
software ecosystems.

I1l. RESEARCH METHOD

Testing involved gathering 16 Laravel-based projects of
students' first year project of Diploma 3 Information
Technology at Del Institute of Technology. We are focusing
solely on files of controller and blade files, which contain the
logic and display components of the program. First of all, we
use tokenization for every blade and controller file. From all
controller and blade files, we then take 20 files from each that
have the most warnings. Subsequently, blank lines of code were
eliminated in order to create a dataset for every line of code,
classified as either containing or without a security hotspot.

Eight security hotspots are defined to facilitate vulnerability
detection, with each line of code scrutinized for compliance
with these identified hotspots. The detected results were cross-
referenced with manually assigned labels. Confusion matrix
calculations were performed, followed by data collection
procedures.

Several stages in this research consist of 5 stages that will be
described detail below

a. Development of detection rules

We use several sources for detecting rules. Some of them
are OWASP Laravel Cheat Sheet, official documentation,
and other studies of potential vulnerabilities. We got
recommendation: for writing secure program code, we are
suggested to focus on appearance, not logic (which
should be in the controller file).

b. Detection method with code tokenization

T_VARIABLE => $foo

T_WHITESPACE => -

T EQUAL =>=

T_WHITESPACE => -
T_CONSTANT_ENCAPSED_STRING => 'bar’
T_SEMICOLON =>;

T_WHITESPACE =>\n

c. Implementation of detection tools and extension

After compiled the rules then we implemented into
program code for the detection process, termed “sniff”.
Sniff basic structure consist of a register function and a
process function [7].

namespace StandardName\Sniffs\MyCategory;

use PHP_CodeSniffer\Sniffs\Sniff;
use PHP_CodeSniffer\Files\File;

class ExamineTokensSniff implements Sniff {

public function register() {
return [T_FUNCTION];

public function process(F

Léé_éur-np(S',o

Visual Studio Code
Visual Studio

IntelliJ

Notepad++

Vim
Android Studio
PyCharm

Sublime Text

Figure 2. Popular IDE in 2022

The fundamental detection engine, which is built on
PHPCS, then has to be linked with an IDE as an
extension or plugin; VSCode is the most preferred option
based on a 2022 StackOverflow survey [8].

d. Dataset collection and processing

For testing, we use 16 students' final projects were
collected in Gitlab repository by students at Del Institute
of Technology of Diploma 3 Information Technology
Program. After that, the gathered data is sorted, as seen in
Figure 3.

Eventually finished, the detection outputs are compared
with the real labels that we manually created. Following
that, data is gathered in order to get insight from the
detection results, and calculations are performed using the
confusion matrix.

e. Functional test of detection tool
VSCode integration is required for this security
hotspot identification tool to help developers
throughout the SDLC phase. Should the developer
input something that corresponds with the eight
established hotspot security detection rules, a warning
tone will subsequently sound.

IV. RESULT AND DISCUSSION

In this section, we outline the systematic approach taken in
the development of detection rules for security hotspots,
along with the evaluation metrics applied to assess the
effectiveness of such rules. Security hotspot detection is
governed by eight detection rules, as explained before.

From research that have been done before, we conclude
there are 8 detection/sniff rules were obtained, shown in
Table 1 before.

The eight rules highlight the security hotspot. The rules
checked in our projects than we got the result. There are 16
laravel-based website projects have been collected. For the
16 data projects, a data cleaning process was carried out,
focusing on detecting controller and blade-type files. We
collected a total of 4605 lines of code. From the detection
results, TP = 346; FP = 55; TN = 5208; and FN = 0, the
values are shown in Table 2.

Table 2. Evaluation Metrics

run PHPCS via ferminal fo

itroll d blad
CHOREY d Dade count security hotspot per
file

files only

!

data filtering
remove emply line

dataset
code and manual label

confusion matrix

stats and insight

select min total line of code
> 10 min warning > 1 per file|

evaluation
actual vs prediction label

Laravel based
website projects

Figure 3. Summary of the development and evaluation
stages

We only use controller and blade file because the core
part of the program is in these 2 file types, namely logic,
and display. Subsequently, blank lines of code were
eliminated in order to create a dataset for every line of
code, classified as either containing or without a security
hotspot.

Then, the created rules are scanned using PHPCS using the
CMD/Windows Powershell console. The hardware
PHPCS is installed on is a A Zenbook AMD Ryzen 7
5700U with Radeon Graphics.

No Component Total number
1 Accuracy 0,99

2 Precision 0,86

3 Recall 1

4 F1 score 0,92

5 TPR 1

6 FPR 0,01

When running, the extension takes O for the shortest

number of tokens, 40 tokens, and 125 ms for the most
extended tokens (25558 tokens). The implementation of
detection tool in VSCode in shown in figure 4

Figure 4. Output example of the extension in analysing
code

There are four detection result that we found while we run
the plugin, they are the logic placed in the blade file,
unencrypted ID, spot validation of user input and upload
file spot detected which is shown in Figure 2.

Figure 2. detection result by type

V. CONCLUSIONS:

The Laravel Code Sniffer plugin provides developers
warnings directly on the code editor. Developers can fully focus
on developing applications without having to spend additional
time detecting security hotspots. This Laravel Code Sniffer
plugin is proven to be able to detect security hotspots in
Laravel-based PHP programs. We did a comparison between
the plug-ins and our own analysis. The results of the plug in are
not much different from our analysis. When compared with the
results of our analysis, the accuracy level of this plug-in reaches
99% with an F1 score of 92,64%. This plug in also works very

fast. From the data we collected, the time required is between 0
- 548 ms. This plugin has proven to be very accurate in
detecting security hotspots, and can increase the security of a
Laravel web application.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of Del
Institute of Technology in the development of this work.

REFERENCES

[1] SonarCloud, “Security hotspots,” SonarCloud .
Accessed: Feb. 02, 2024. [Online]. Available:
https://docs.sonarsource.com/sonarcloud/digging-
deeper/security-hotspots/

[2] Positive Technologies, “Threats and vulnerabilities in
web applications 2020-2021,” Jun. 2022, Accessed:
Feb. 02, 2024. [Online]. Available:
https://mww.ptsecurity.com/ww-en/analytics/web-
vulnerabilities-2020-2021

[3] M. Anis Al Hilmi, Raswa, R. Robiyanto, D. Oranova
Siahaan, A. Puspaningrum, and H. Susanti Samosir,
“A Static IDE Plugin to Detect Security Hotspot for
Laravel Framework Based Web Application,” in 2023
IEEE International Conference on Data and Software
Engineering (ICoDSE), IEEE, Sep. 2023, pp. 1-6. doi:
10.1109/ICoDSE59534.2023.10291941.

[4] I. Abunadi and M. Alenezi, “An empirical
investigation of security vulnerabilities within web
applications,” 2016. Accessed: Feb. 02, 2024.
[Online]. Available:
https://malenezi.github.io/malenezi/pdfs/jucs 22 04
0537_0551.pdf

[5] J. Zhao and R. Gong, “A New Framework of Security
Vulnerabilities Detection in PHP Web Application,”
in 2015 9th International Conference on Innovative
Mobile and Internet Services in Ubiquitous
Computing, IEEE, Jul. 2015, pp. 271-276. doi:
10.1109/IM1S.2015.42.

[6] R. A. Khan, S. U. Khan, and M. Ilyas, “Exploring
Security Procedures in Secure Software Engineering:
A Systematic Mapping Study,” in The International
Conference on Evaluation and Assessment in Software
Engineering 2022, New York, NY, USA: ACM, Jun.
2022, pp. 433-439. doi: 10.1145/3530019.3531336.

[7] Payton Swick, “Creating Sniffs for a PHPCS
Standard.” Accessed: Jul. 13, 2023. [Online].
Available: https://payton.codes/2017/12/15/creating-
sniffs-for-a-phpcs-standard/

[8] Stackoverflow Insight, “Stackoverflow 2022
Developer Survey.” Accessed: Jul. 13, 2023. [Online].
Available:
https://survey.stackoverflow.co/2022/#section-most-
popular-technologies-integrated-development-
environment

