

Analysis of Security Hotspots in Diploma 3

Information Technology Program's Final Project at

Del Institute of Technology
Hernawati Susanti Samosir1*, Muhammad Anis Al Hilmi2*, Yulanda Pasaribu1, Salomo Gemayel Josep

Sinambela1, Vivaldi Adventus Simangunsong1, Benyamin Sibarani1, Yen Rylin Hutasoit1

Information Technology, Del Institute Of Technology

Sitoluama, Laguboti

Politeknik Negeri Indramayu,

Indramayu, West Java
1hernawati@del.ac.id

2alhilmi1@gmail.com

1pasaribuyulanda94@gmail.com

1salomogemayel@gmail.com

1vivadvent@gmail.com

1benyaminsibarani2406@gmail.com

1yenrylin01@gmail.com

*corresponding author

Abstract—
 This research investigates security hotspots in Del Institute

of Technology students' final project particularly regarding the

implementation of the Model-View-Controller (MVC)

principles using PHP Laravel. A security hotspot was proposed

to find patterns in program code sections that could be hotspots

or possible vulnerabilities.

Some of security hotspot examples are misplacement of logic

in the view instead of the controller, improper handling of file

uploads in the controller, and various other errors. The research

generated through this methodology offers insights into

commonly overlooked vulnerable points in software
development practices. Additionally, the study includes an

analysis of 16 students' final projects, where data is collected,

and controller and blade files are separated. Subsequently, a

plugin accessible at

https://marketplace.visualstudio.com/items?itemName=MuhA

nisAlHilmi.laravel-php-codesniffer is executed. This plugin, a

result of previous research, is useful for assisting in secure

coding, detecting security indicators, and preventing

vulnerabilities.

 Eight security hotspots are created to help detect

vulnerabilities in the code. Each line of code is then examined
to determine its compatibility with each previously established

security hotspot. Furthermore, we used a threshold of around

80% in this research based on IBM standards. The results will

be evaluated in terms of accuracy and F1 score, allowing for

the identification of which security hotspots are most frequently

encountered in student final projects. This research is expected

to contribute to the improvement of programming standards

and security practices in software engineering, providing a
better understanding for educators and developers.

Keywords— Security Hotspots, MVC Principles, PHP

Laravel, Vulnerabilities, Secure Coding Practices

I. INTRODUCTION

 A security hotspot highlights a security-sensitive piece of

code that the developer needs to review. Upon review, you will

either find there is no threat, or you need to apply a fix to secure

the code [1]. Web applications containing high-severity

vulnerabilities was 66 percent in 2020 and 62 percent in 2021,

significantly more than in 2019 [2].

 At Del Institute of Technology, there are still many students

who do not understand the use of hotspot security. Starting

from research that had been previously developed by Hilmi et

al. [3]. From that research it was stated that there was a plugin

that was proven very accurate in detecting security hotspots in

the program code. Therefore, the author collected program code

(PHP Laravel) from the first final projects of D3TI study

program’s students and then analysed the types of security

hotspots that were often carried out by these students. The hope

is that using this plugin can help developers find out how secure

the web application they are building is and will later become a
learning tool for creating program code that applies hotspot

security to the application they want to build.

mailto:6benyaminsibarani2406@gmail.com
mailto:6benyaminsibarani2406@gmail.com

II. RELATED WORK

A.Security Hotspot Rules

In this section, we elaborate on the systematic approach applied

in developing detection rules for security vulnerabilities, along

with the evaluation metrics utilized to assess the effectiveness
of these rules. The detection of security vulnerabilities is

governed by eight key rules, as outlined in the set of security

vulnerability rules presented in Table 1.

Table 1. Detection rules

No Rule Pattern

1 Disallow logic in

blade file

detect @if, @elseif, @else

2 Disallow

unencrypted id in

blade

detect string->id)

3 Detect read-only

string in blade

detect validate([detect rules()

return []

detect Validator::make()

detect controllerName::create()

4 Detect raw SQL

syntax in

controller and

blade

detect readonly string

5 Detect raw SQL

syntax in

controller and

blade

detect DB::raw, selectRaw('',

whereRaw('', havingRaw('',

orderByRaw('', groupByRaw(''

6 Detect unescaped

string {!!..!!} in

blade

detect {!! … !!}

7 Detect upload file

spot in controller

detect T_VARIABLE->file(or

T_VARIABLE->image->

8 Disallow weak

hash in controller

and blade

detect MD5/SHA1

The detection rules, as seen in Table 1, serve as the foundation

for identifying security vulnerabilities within the system. These

rules encompass various criteria and conditions indicative of

potential vulnerabilities, providing a comprehensive
framework for proactive security assessment.

C. Metric Evaluation

After detecting security vulnerabilities using the specified

rules, the next step involves applying evaluation metrics to

measure the system's performance. Evaluation metrics provide

a quantitative assessment of the accuracy, sensitivity, precision,
and overall effectiveness of the detection system. Four main

metrics are used for this purpose:

True Negatives (TN): Occurs when a security hotspot is not

detected according to the rule set, and upon manual inspection,

it is confirmed that no security hotspot occurred.

False Positives (FP): Occurs when a security hotspot is

detected according to the rule set, but upon manual inspection,

it is confirmed that no security hotspot occurred.

False Negatives (FN): Occurs when a security hotspot is not

detected according to the rule set, but upon manual inspection,

it is confirmed that a security hotspot did occur.

True Positives (TP): Occurs when a security hotspot is

detected according to the rule set, and upon manual inspection,
it is confirmed that a security hotspot did occur.

The collected data, representing the counts of TN, FP, FN, and

TP, is used to calculate the following evaluation metrics:

Accuracy: Overall precision of the detection system, calculated
as (TN + TP) / (TN + FP + FN + TP).

True Positive Rate (TPR): Also known as Sensitivity or Recall,

measures the proportion of actual security hotspots correctly

identified, calculated as TP / (TP + FN).

False Positive Rate (FPR): Evaluates the level of false alarms,

calculated as FP / (FP + TN).

Precision: Precision metric measures the accuracy of positive

security hotspot predictions, calculated as TP / (TP + FP).

Recall: Similar to TPR, emphasizes the system's ability to

identify actual positives, calculated as TP / (TP + FN).

F1 Score: Providing a balanced assessment of system

performance, calculated as 2 * (Precision * Recall) / (Precision

+ Recall).

Through the application of these evaluation metrics,

researchers can acquire in-depth insights into the strengths and

weaknesses of the security vulnerability detection system,

thereby facilitating refinement and continuous improvement.

Extensive research has focused on investigating security

weaknesses in web applications, including those that depend on

PHP-based frameworks. Articles [4] and [5] support the early

identification of weaknesses, with [4] specifically highlighting

the use of machine learning methods to predict vulnerable

elements. Khan's groundbreaking publication in 2022 [6] offers

a comprehensive examination of secure software engineering.

It outlines essential elements such as measurements, tools,

standards, and research areas that are vital for creating robust

software applications. Zhao [5] presents a new methodology

that combines dynamic and static analysis to improve the

efficiency of discovering security vulnerabilities in PHP online
applications. These studies emphasize the crucial significance

of discovering and reducing security vulnerabilities in software

development, specifically in PHP Laravel projects.

Expanding on previous research, particularly the study titled "A

Static IDE Plugin to Detect Security Hotspots for Laravel

Framework-Based Web Applications" by Hilmi et al. [3], this

current study utilizes a widely recognized plugin known for its

precision in identifying security weaknesses in program code.

This research highlights the effectiveness of the plugin in

helping developers identify vulnerabilities and follow secure

coding practices, hence strengthening the integrity and

resilience of PHP Laravel projects.

This study further investigates security vulnerabilities in the
final projects of Del Institute of Technology students,

specifically examining the implementation of Model-View-

Controller (MVC) principles using PHP Laravel. The research

aims to reveal typical vulnerabilities and faults in software

development methods by examining 16 student projects and

utilizing the previously described plugin. This will bring

attention to disregarded aspects of software development. The

study aims to assess the frequency and significance of

identified security hotspots for project integrity by

implementing eight security hotspots and using a threshold of

around 80% according to IBM standards. The results of this
inquiry are expected to enhance programming standards and

strengthen security protocols in software engineering, therefore

promoting a more comprehensive knowledge among educators

and developers.

Furthermore, the research is consistent with the wider

discussion on secure software engineering techniques. Paper

[4] and [5] promote the implementation of proactive strategies

to detect and address vulnerabilities, emphasizing the crucial

importance of ongoing enhancement in software security.

Khan's extensive framework [6] offers a clear plan for
incorporating security issues into the software development

lifecycle, highlighting the importance of a comprehensive

approach to safe software engineering. Similarly, Zhao's novel

framework [5] emphasizes the significance of utilizing both

dynamic and static analysis to improve the efficiency of

vulnerability detection techniques in PHP online applications.

To summarize, the compilation of previous studies emphasizes

the pressing requirement to tackle security weaknesses in web

applications, namely those created utilizing PHP Laravel

frameworks. Developers can strengthen the security of software

systems by using advanced tools and procedures, like the IDE
plugin mentioned in Hilmi's research [3]. These tools help

developers find and fix security vulnerabilities, making the

software more resistant to possible attackers. The area of secure

software engineering is constantly evolving through

collaborative efforts and continuous research activities. This

progress leads to improved security practices and strong

software ecosystems.

III. RESEARCH METHOD

 Testing involved gathering 16 Laravel-based projects of

students' first year project of Diploma 3 Information

Technology at Del Institute of Technology. We are focusing

solely on files of controller and blade files, which contain the
logic and display components of the program. First of all, we

use tokenization for every blade and controller file. From all

controller and blade files, we then take 20 files from each that

have the most warnings. Subsequently, blank lines of code were

eliminated in order to create a dataset for every line of code,

classified as either containing or without a security hotspot.

Eight security hotspots are defined to facilitate vulnerability

detection, with each line of code scrutinized for compliance

with these identified hotspots. The detected results were cross-

referenced with manually assigned labels. Confusion matrix
calculations were performed, followed by data collection

procedures.

Several stages in this research consist of 5 stages that will be

described detail below

a. Development of detection rules

We use several sources for detecting rules. Some of them
are OWASP Laravel Cheat Sheet, official documentation,

and other studies of potential vulnerabilities. We got

recommendation: for writing secure program code, we are

suggested to focus on appearance, not logic (which

should be in the controller file).

b. Detection method with code tokenization

T_VARIABLE => $foo

T_WHITESPACE => ·

T_EQUAL => =

T_WHITESPACE => ·

T_CONSTANT_ENCAPSED_STRING => 'bar'

T_SEMICOLON => ;

T_WHITESPACE => \n

c. Implementation of detection tools and extension

After compiled the rules then we implemented into
program code for the detection process, termed “sniff”.

Sniff basic structure consist of a register function and a

process function [7].

Figure 1. Sniff basic structure

Figure 2. Popular IDE in 2022

The fundamental detection engine, which is built on

PHPCS, then has to be linked with an IDE as an

extension or plugin; VSCode is the most preferred option

based on a 2022 StackOverflow survey [8].

 d. Dataset collection and processing

 For testing, we use 16 students' final projects were
collected in Gitlab repository by students at Del Institute

of Technology of Diploma 3 Information Technology

Program. After that, the gathered data is sorted, as seen in

Figure 3.

Figure 3. Summary of the development and evaluation

stages

We only use controller and blade file because the core

part of the program is in these 2 file types, namely logic,

and display. Subsequently, blank lines of code were

eliminated in order to create a dataset for every line of

code, classified as either containing or without a security

hotspot.

Then, the created rules are scanned using PHPCS using the
CMD/Windows Powershell console. The hardware

PHPCS is installed on is a A Zenbook AMD Ryzen 7

5700U with Radeon Graphics.

Eventually finished, the detection outputs are compared

with the real labels that we manually created. Following

that, data is gathered in order to get insight from the

detection results, and calculations are performed using the

confusion matrix.

e. Functional test of detection tool

VSCode integration is required for this security

hotspot identification tool to help developers

throughout the SDLC phase. Should the developer

input something that corresponds with the eight

established hotspot security detection rules, a warning

tone will subsequently sound.

IV. RESULT AND DISCUSSION

In this section, we outline the systematic approach taken in

the development of detection rules for security hotspots,

along with the evaluation metrics applied to assess the

effectiveness of such rules. Security hotspot detection is

governed by eight detection rules, as explained before.

From research that have been done before, we conclude

there are 8 detection/sniff rules were obtained, shown in

Table 1 before.

The eight rules highlight the security hotspot. The rules

checked in our projects than we got the result. There are 16

laravel-based website projects have been collected. For the

16 data projects, a data cleaning process was carried out,

focusing on detecting controller and blade-type files. We

collected a total of 4605 lines of code. From the detection

results, TP = 346; FP = 55; TN = 5208; and FN = 0, the

values are shown in Table 2.

Table 2. Evaluation Metrics

No Component Total number

1 Accuracy 0,99

2 Precision 0,86

3 Recall 1

4 F1 score 0,92

5 TPR 1

6 FPR 0,01

 When running, the extension takes 0 for the shortest
number of tokens, 40 tokens, and 125 ms for the most

extended tokens (25558 tokens). The implementation of

detection tool in VSCode in shown in figure 4

Figure 4. Output example of the extension in analysing

code

There are four detection result that we found while we run

the plugin, they are the logic placed in the blade file,

unencrypted ID, spot validation of user input and upload

file spot detected which is shown in Figure 2.

Figure 2. detection result by type

V. CONCLUSIONS :

The Laravel Code Sniffer plugin provides developers

warnings directly on the code editor. Developers can fully focus

on developing applications without having to spend additional
time detecting security hotspots. This Laravel Code Sniffer

plugin is proven to be able to detect security hotspots in

Laravel-based PHP programs. We did a comparison between

the plug-ins and our own analysis. The results of the plug in are

not much different from our analysis. When compared with the

results of our analysis, the accuracy level of this plug-in reaches

99% with an F1 score of 92,64%. This plug in also works very

fast. From the data we collected, the time required is between 0

- 548 ms. This plugin has proven to be very accurate in

detecting security hotspots, and can increase the security of a

Laravel web application.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of Del

Institute of Technology in the development of this work.

REFERENCES

[1] SonarCloud, “Security hotspots,” SonarCloud .

Accessed: Feb. 02, 2024. [Online]. Available:

https://docs.sonarsource.com/sonarcloud/digging-

deeper/security-hotspots/

[2] Positive Technologies, “Threats and vulnerabilities in

web applications 2020–2021,” Jun. 2022, Accessed:

Feb. 02, 2024. [Online]. Available:

https://www.ptsecurity.com/ww-en/analytics/web-

vulnerabilities-2020-2021

[3] M. Anis Al Hilmi, Raswa, R. Robiyanto, D. Oranova

Siahaan, A. Puspaningrum, and H. Susanti Samosir,
“A Static IDE Plugin to Detect Security Hotspot for

Laravel Framework Based Web Application,” in 2023

IEEE International Conference on Data and Software

Engineering (ICoDSE), IEEE, Sep. 2023, pp. 1–6. doi:

10.1109/ICoDSE59534.2023.10291941.

[4] I. Abunadi and M. Alenezi, “An empirical

investigation of security vulnerabilities within web

applications,” 2016. Accessed: Feb. 02, 2024.

[Online]. Available:

https://malenezi.github.io/malenezi/pdfs/jucs_22_04_

0537_0551.pdf
[5] J. Zhao and R. Gong, “A New Framework of Security

Vulnerabilities Detection in PHP Web Application,”

in 2015 9th International Conference on Innovative

Mobile and Internet Services in Ubiquitous

Computing, IEEE, Jul. 2015, pp. 271–276. doi:

10.1109/IMIS.2015.42.

[6] R. A. Khan, S. U. Khan, and M. Ilyas, “Exploring

Security Procedures in Secure Software Engineering:

A Systematic Mapping Study,” in The International

Conference on Evaluation and Assessment in Software

Engineering 2022, New York, NY, USA: ACM, Jun.

2022, pp. 433–439. doi: 10.1145/3530019.3531336.
[7] Payton Swick, “Creating Sniffs for a PHPCS

Standard.” Accessed: Jul. 13, 2023. [Online].

Available: https://payton.codes/2017/12/15/creating-

sniffs-for-a-phpcs-standard/

[8] Stackoverflow Insight, “Stackoverflow 2022

Developer Survey.” Accessed: Jul. 13, 2023. [Online].

Available:

https://survey.stackoverflow.co/2022/#section-most-

popular-technologies-integrated-development-

environment

