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Abstract— Diabetes has become one of the most common and 
challenging health conditions in the world because it alters how 
the body uses glucose, an essential source of energy, and can 
damage organs including the kidneys, heart, eyes, and other issues 
in addition to the blood. Therefore, it is necessary to develop a 
system that can accurately  identify  diabetes patients using 
medical. indicators. Artificial intelligence  (AI)-based techniques 
such as Machine Learning (ML) have proven to be effective in this 
regard. Sequential machine learning methods utilize a single 
underlying hardware processing element, thus having poor real-
time prediction efficiency. Moreover, these approaches may 
struggle to handle large amounts of data due to their time-
consuming nature. Parallel computing has been widely applied 
techniques that utilize multiple hardware processing elements to 
increase the application's computation time. In this study, we 
utilized parallel techniques in Python to train ML models and 
provided a comparative study for different parallel techniques. 
We used the Pima Indian Diabetes Dataset (PIDD), conducted five 
different experiments, and provided a comparative performance 
evaluation.  We deployed two ML models which are Decision Tree 
(DT) and Linear Regression (LR). For each model, we compared 
the sequential execution with three different parallel Python 
techniques (multithreading, multiprocessing, and loky), each 
utilizing four cores. Our results showed that LR with 
multiprocessing technique achieved a higher accuracy of 78% and 
greater speedup of 39. The results in general indicated that 
parallel execution outperforms sequential execution in terms of 
speed. This comparative study provides valuable insights into how 
to optimize machine learning models for diabetes detection and 
highlights the usefulness of parallel computing technologies in 
healthcare applications. 
 
Keywords— parallel processing. Diabetes. machine learning. 
Decision Tree. Linear Regression 

I. INTRODUCTION 
Diabetes affects 422 million people worldwide and is 

expected to increase to 490 billion by 2030, according to the 
World Health Organization [1]. Diabetes is a major chronic 
disease whose prevalence is continuously increasing.  Diabetes 
impacts the body's ability to metabolize glucose, or sugar, 
which is a vital source of energy. Diabetes is classified into two 
types, which are type 1 diabetes and type 2 diabetes. Type 1 
diabetes is an autoimmune condition in which the immune 
system mistakenly attacks and destroys insulin-producing beta 
cells in the pancreas. Type 2 diabetes is insulin resistance, 
where the body’s cells can’t process insulin properly, and it can 

affect children and adults. Over time, the pancreas stops 
producing enough insulin. Lifestyle factors, genetics, and 
obesity are common risk factors. Diabetes that goes 
undiagnosed and untreated can cause blood sugar levels to 
fluctuate and, in extreme cases, damage organs such as the 
kidneys and eyes. Early and precise diagnosis of diabetes 
mellitus is a significant challenge for healthcare professionals, 
particularly in its early stages [1]. 

The healthcare sector manages extensive databases, 
including structured, semi-structured, and unstructured data. 
These databases provide fertile ground for the application of 
big data analytics. By using machine learning techniques to 
analyze these healthcare databases, it becomes possible to 
develop AI models capable of detecting diabetes. These models 
have the potential to greatly enhance early diagnosis, and 
personalized treatment plans, and improve patient care. 

Artificial intelligence (AI) techniques such as machine 
learning (ML) have been increasingly utilized in the medical 



sector and offered valuable support by providing a reference 
point for gaining preliminary insights into different diseases in 
terms of prediction, classification, or detection which greatly 
contributed to reducing the workload in healthcare. A 
considerable amount of research has been dedicated to 
automating diabetes prediction through ML techniques, often 
utilizing different open-source datasets for analysis.  Predicting 
diabetes early and with accurate results can save many human 
lives. The purpose of such investigation is to assess the ML 
classifiers that can predict the probability of disease in patients 
with the greatest precision and accuracy. 
     Unfortunately, ML models need a lot of computational 
power, which results in a longer computation time. Usually, in 
single-processor environments, the ML algorithms cause a 
significant delay in model processing from training to 
classification. Sequential ML computing is often inappropriate 
for handling huge datasets. On the other hand, parallel 
computation offers exceptional opportunities to implement 
these large-scale problems due to their ability to efficiently 
exploit multiple processor environments. In our study, the main 
purpose is to increase the ML model prediction speed by 
applying different parallel computing techniques for the ML 
models and conducting a comparative evaluation study. We 
studied the three parallel ML techniques in Python namely: 
multithreading, multiprocessing, and loky which can be 
effectively deployed to reduce the execution time for the ML 
algorithms. Those three techniques were studied in Linear 
Regression (LR) and Decision Tree (DT) algorithms. LR and 
DT are both fundamental ML algorithms utilized in supervised 
learning, each offering unique approaches to predictive 
modelling. LR establishes optimal linear functions by analysing 
dataset relationships, while DT categorizes data and forecasts 
outcomes through structured flowcharts. Despite their, both 
methods share the goal of facilitating accurate predictions and 
informing decision-making processes. 

The key contributions of this paper can be summarized as 
follows: 

• Conducting  comparative performance evaluation for the 
sequential and three different parallel Python techniques 
(multithreading, multiprocessing, and loky) utilizing four 
processing cores on two ML models (LR and DT) to 
enhance the detection of Diabetes. 

• Making a significant contribution to AI, healthcare, and 
parallel computing literature, especially with limited studies 
available for comparing the performance of parallel 
techniques on ML in this domain. 
This paper is structured as follows: Section II clarifies the 

previous studies that deployed sequential and parallel ML 
techniques. Section III presents the methodology followed to 
carry out the experiments. Section IV discusses the 
experimental setup and results obtained. Section V provides a 
conclusion and future work.  

 
II. literature Review 

Diabetes is a long-term medical condition characterized by 
persistently high blood sugar levels brought on by inadequate 
insulin production, inadequate insulin utilization, or both. The 

use of predictive ML algorithms in the context of diabetes 
mellitus is explored in this section. However, there is still room 
for improvement in the Diabetes prediction. The objective of 
this study is to develop ML algorithms in parallel. It also aims 
to highlight the significance of early detection to reduce 
complications and to clarify the critical role that predictive ML 
algorithms play in the management of diabetes. In this section, 
we discuss several related articles.  

A study aimed to identify the most effective ML model for 
diabetes prediction by Kangra et al. [2] compared different 
algorithms including Naïve Bayes (NB), Random Forest (RF), 
Support Vector Machine (SVM), K-Nearest Neighbor (KNN), 
Decision Tree (DT), and Logistic Regression (LR), to analyze 
performance indices and error rates. The used dataset was The 
German dataset and the Pima Indian Diabetic (PID) dataset 
from Kaggle, with analysis conducted in WEKA 3.8.6 software 
using Python. The PID dataset comprised 9 attributes and 768 
instances, with the goal of diabetes classification. The German 
dataset also had nine variables. In both cases, the primary 
objective was diabetic status determination. SVM performed 
well with a 74% accuracy for the PID dataset, while KNN and 
RF excelled, achieving an impressive 98.7% accuracy for the 
German dataset. The researchers suggested exploring hybrid 
models and assessing their performance alongside other 
algorithms, providing valuable insights for further research. 

A study by Sivaranjani S et al. [3] aimed to predict diabetes 
using ML algorithms, which support SVM and RF. They used 
the PIMA [4], dataset and performed feature selection using the 
“wrapper method” to increase the efficiency of the model and 
reduce its complexity. Special analytical tools Principal 
Component Analysis (PCA) was used for dimensionality 
reduction, optimizing dataset complexity effective modeling. 
The results showed that feature selection affected RF and SVM 
classifiers accuracy, the proposed technique achieved 83% 
accuracy with RF and 81.4% with SVM. Future research may 
refine the feature selection and explore new dimensionality 
reduction techniques to move forward and increase the 
efficiency of the model. 

A study by Soni M еt al. [5] suggested using various 
classification ML methods for early diabetes prediction, which 
are KNN, LR, DT, SVM, Gradient Boosting (GB), and RF. All 
these classifications and ensemble methods were applied to 
detect which of them gave the highest accuracy for diabetes 
prediction. The PIMA [4] was used to gather the data and 
underwent preprocessing in two steps, which were Missing 
Values removal and splitting of data, utilized in all the 
algorithms implemented using Python. While all these 
algorithms demonstrated accuracy еxcееding 65%, RF stood 

out with the highest accuracy among them at 78%, making it 
the most accurate algorithm in predicting diabetes.  

A study by Sarwar Muhammad et al. [6] proposed the 
deployment of ML algorithms to predict diabetes and help 
healthcare professionals make timely decisions on the health 
and treatment of the patient. The study compared the 
performance of six different algorithms which are SVM, DT, 
LR, RF, KNN, and NB, the dataset used was the Pima Indians 
Diabetes [4]. The dataset was divided into two sections training 



data (70%) and data (30%). The results showed that SVM and 
KNN achieved the highest accuracy of 77% compared to other 
algorithms tested.  

In a study conducted by Sierra-Sosa et al. [7], researchers 
proposed using parallel deep-learning (DL) techniques on 
multiple Graphics processing units (GPUs) for predicting 
adverse events in patients with type 2 diabetes. The study used 
a database from the Basque Health Service that contained 
records of 150,156 patients diagnosed with type 2 diabetes 
mellitus. The algorithms implemented in this study included 
Logistic Regression (LR), Linear Discriminant Analysis 
(LDA), Quadratic Discriminant Analysis (QDA), Support 
Vector Machines (SVM), and Recurrent Neural Network 
(RNN). The algorithms were implemented in TensorFlow using 
Python as the programming language. The results of the study 
showed that LDA and SVM outperformed the other algorithms 
in predicting Major Amputations and acute Myocardial 
Infarction with 97% accuracy. LDA balanced and SVM 
balanced achieved 92% accuracy in predicting Hospital 
Admission for avoidable causes. RNN with a balanced dataset 
performed best, achieving 94.6% accuracy in predicting at least 
one disease, surpassing LDA balanced and SVM weighted by 
7.4%. The paper suggests expanding the dataset and exploring 
additional deep-learning techniques to enhance prediction 
accuracy in the future.    

 A study by Rani K [8] aimed to develop a highly accurate 
system for early diabetes prediction by combining various ML 
methods. The study used the John Diabetes Database[9], which 
had nine features, with 2000 data points. The study used John’s 

diabetes database, which contains nine attributes, with 2,000 
data points. The study compared the accuracy of training and 
testing diabetes prediction when implemented by Python on 
several classification methods, including KNN, LR, DT, SVM, 
and RF. In the study, KNN and LR achieved an accuracy of up 
to 78%, while (DT) on all previous algorithms with an accuracy 
of 99%, and the most influential attribute was “glucose”. RF 

reported an accuracy of 94%, with “glucose” and “BMI” as key 

attributes. SVM delayed accuracy by 76%.  
A study conducted by Shrivastava et al. [10] proposed a 

parallel algorithm based on an SVM to predict the likelihood of 
diabetes in people using a large dataset from S. S. Medical 
College, Rewa, Master Chart. The dataset was distributed over 
multiple machines to process it in parallel, and the algorithm 
was implemented in MATLAB 7.12.7, R2011B on a machine 
with 3GB RAM. The study showed that the parallel SVM has 
substantially lower training time compared to the sequential 
SVM while maintaining similar accuracy levels. The parallel 
implementation also showed the possibility for scalability with 
multiple machines, resulting in a 1/3 reduction in training time. 
However, for future improvements, researchers can enhance 
the accuracy by improving the selection of the starting point for 
K-means clustering when dividing data into large clusters. 

Our work in this paper is similar to the previous related 
research in terms of using ML for Diabetes prediction. 
However, we provided a comparative performance evaluation 
study for different parallel techniques with ML models. This 
comparative study demonstrates the value of parallel 

computing technology in healthcare applications and offers 
insightful information about how to optimize ML models for 
diabetes detection. 

                                
                                          TABLE I 

 Literature Review Summary 

 
III. METHODOLOGY 

 
    We trained the parallel ML models in Python using various 
multiprocessing and multithreading strategies. Then, we 
measured the training time in sequential execution and 
compared it to the parallel execution time, with a publicly 
accessible dataset, which distinguishes diabetes from other 
medical conditions. An overview of the methodology steps that 
were performed is demonstrated in Fig.1 and is covered in more 
detail in the following subsections. 

Year Algorithm Dataset Performance 
measures 

2023 NB, RF, SVM, 
KNN,DT and LR 

Germany and Pima 
Indian diabetic 
(PID) diabetes 
datasets 

Identifying the 
accuracy 

2021 SVM and (RF). The PIMA Indianas 
Diabetes (PID) 

 

The performance 
measures 
mentioned in the 
paper are test 
accuracy, 
validation 
accuracy, 
sensitivity, and 
specificity 

2020 KNN, LR, 
DT,RF ,GP and 
SVM 

The PIMA Indianas 
Diabetes (PID) 

Identifying the 
accuracy 

2020 KNN, LR, 
DT,RF and SVM 

John Diabetes 
Database 

Identifying the 
accuracy 

2019 SVM From S. S. Medical 
College, Rewa, 
Master Chart   

Identifying the 
accuracy and time 
in sec.   

2018 SVM, DT, LR, 
RF, KNN, and 
NB 

The PIMA Indianas 
Diabetes (PID) 

Identifying the 
accuracy 

2011 LR, 
LDA,QDA,SVM, 
and RNN   

Form. The Basque 
Health Service   

Identifying the 
accuracy, 
precision, recall, 
and F1-score.   



 
                  

                       Fig.1 The methodology adopted 

A.  Dataset Description: 
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The dataset used was developed by the National Institute of 
Diabetes and Digestive and Kidney Diseases (PIMA), and its 
primary purpose is to predict the likelihood of a patient 
developing diabetes based on specific diagnostic tests. This 
dataset has been updated biennially since 1965[7]. 

Tables II and III, show the diabetic dataset characteristics, 
data type, and statistics. The classifier predicts whether the 
patient has diabetes based on the dataset characteristic, which 
is intended for binary classification, with class value 1 showing 
persons who have gotten a “diagnosis of diabetes” and class 0 

standing for those who have not obtained a diabetes diagnosis. 
There are 768 records in the dataset, 500 for training and 

268 for testing, with no missing values. It is also worth noting 

that the dataset holds impractical values like zero for body mass 
index and insulin. There are a total of nine features, eight of 
which are independent, and one is target.  

                                       TABLE III 
                               Attribute Description  
 

Sl.No Attribute Description 

1 No. of 
times Pregnant 

Discrete 
data of type int64 

2 Plasma 
Glucose 

Concentration 

Discrete 
data of type int64 

3 Diastolic 
Blood Pressure 

(mm Hg) 

Discrete 
data of type int64 

4 Skin 
Thickness (mm) 

Discrete 
data of type int64 

5 Insulin 
mu U/ml 

Discrete 
data of type int64 

6 BMI 
(Weight/ Height) 

(kg/m2) 

Continuous 
data of type int64 

7 Diabetes 
Pedigree Function 

Continuous 
data of type int64 

8 Age Discrete 
data of type int64 

9 Outcome 
class 

Discrete 
data of type int64 

B. Data Preprocessing 

We noticed biologically implausible zero values in the 
PIMA dataset, so we employed a hybrid approach to manage 
zero values, eliminating missing values from the parameters 
that have the greatest effect on the outcome and normalizing 
the remaining parameters using the median, to create efficient 
models capable of accurately detecting cases of diabetes and 
non-diabetes. We normalized Skin Thickness and Insulin 
attributes by filling null values by median and then eliminating 
zero values by median because blood pressure and glucose are 
critical for deciding diabetes and their null fraction is extremely 
small, so it should be better to remove invalid entries. We then 

PIDD Dataset 

768 Samples 

8 I/P Attributes 

2 O/P Classes 

9 Total Attributes 

Nil Missing values 

Nil Noisy-Attributes 



separated the clean dataset into two datasets: training 70% and 
testing 30%, using the sk-learn train split technique[11]. 

C. Classification Phase 

     We assessed two ML, which are DT and LR, to train and test 
the dataset for predicting diabetes. Both sequential and parallel 
training methods were used for all the models. In sequential 
training, only one execution thread was used to train the 
models; in parallel training execution, 4 threads were used to 
train the models.  

1)        Sequential Training:   In terms of sequential 
training, The DT and LR  models were sequentially trained 
to gather performance metrics and keep track of execution 
time.  

DT is a supervised learning algorithm used to solve 
classification and regression problems. It is usually 
preferred in such cases. The classifier has a tree-like 
structure, where the internal nodes represent the dataset’s 

features, the branches decide the decision-making process, 
and each leaf node stands for the classification result [12]. 

LR is a type of supervised ML algorithm that decides 
how dependent a variable is, and how one or more 
independent features are related linearly. The algorithm 
seeks out the best linear equation that can predict the value 
of the dependent variable based on the independent 
variables [13]. 

2)        Parallel Training:        In the following subsections, 
the techniques adopted for parallel training of the DT and 
LR models are described. Threading Backend and Number 
of Cores in Python Parallel In this technique, the sklearn 
joblib library was imported into the working environment 
to use Python’s built-in parallel backend threading 
features. The environment’s ML models can be parallel 

trained by using the commands import joblib and from 
joblib import parallel backend. which enables them to 
utilize all the machine’s available cores, speeding up the 
training process. Moreover, we added another argument 
called n_jobs that gives us more control over the number 
of active threads or CPU cores, which means that we use 
multi-threading to parallelize the training process and 
allocate a specific number of threads for that purpose. For 
example, n_jobs = -1 instructs the computer to use every 
available thread, while n_jobs = 1 runs the program in a 
single thread, and so on. Before fitting the model can be 
written this line of code “with 

parallel_backend(’threading’, n_jobs=#)” where # 

represents the number of cores or processes to utilize to 
train the models parallelly. 
    Multi-Processing Backend and Number of Cores in 
Python Parallel This technique makes use of the same code 
and libraries as those mentioned above. However, it makes 
use of processes rather than threads. The 
“multiprocessing” backend utilizes individual processes, 
making it a suitable choice for parallelism within a single 
host. However, it’s considered a legacy approach. The 

code for the “multiprocessing” technique is implemented 

using “with parallel_backend (’multiprocessing’, 

n_jobs=#) ”Loky Backend and Number of Cores in Python 

Parallel. The parallel backend libraries and codes of 
Python are also used in this technique. The “loky” backend 

allows for adaptive parallelism and is particularly valuable 
for tasks that benefit from efficient multi-processing 
execution. It is based on single-host processes and is 
primarily based on multi-processing execution. To 
implement the “loky” technique, use this line “with 
parallel_backend (’loky’, n_jobs=#) ”. 

D. Evaluation Phase 

Different performance metrics can be used to compare ML 
classifiers. In this study, the models that were deployed were 
evaluated and their performances were compared using 
accuracy, precision, recall, and F1-score. The confusion matrix, 
which is used to evaluate the accuracy of the classifier, supplies 
a comparison of the model’s predicted classifications alongside 

the actual classifications and it consists of four main values. In 
addition, the execution times for both sequential and parallel 
programs were given in seconds, and the speedup was 
calculated using this data. 
• True Positive (TP): The model correctly predicts that a 

person has diabetes, and the person does have diabetes. 
• False Positive (FP): The model incorrectly predicts that a 

person has diabetes when the person does not have 
diabetes.  

• True Negative (TN): The model correctly predicts that a 
person does not have diabetes, and the person does not 
have diabetes. 

• False Negative (FN): The model incorrectly predicts that a 
person does not have diabetes when the person does have 
diabetes.  
     Accuracy is the percentage of how often a classification 
ML model is correct overall. By comparing the number of 
accurate predictions to the total number of instances in a 
dataset and calculated using the following formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁) 

Precision refers to the number of true positives divided by 
the total number of positive predictions and is calculated using 
the following formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

Recall is the proportion of correctly predicted classes to all 
positive classes and is calculated using the following formula: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 

 F1-score supplies a single metric that balances the trade-
off between precision and recall, and uses the following 
formula: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = (2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+ 𝑅𝑒𝑐𝑎𝑙𝑙) 



 Speedup is the proportion of the time it takes to complete a 
task sequentially to the time it takes to complete the same task 
in parallel calculated by following the formula: 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = (𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒)
/(𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒) 

IV. RESULT AND DISCUSSION  
 

A. Experimental Setup 

   To conduct the experiments, we used Python 3.11.5 on the 
Visual Studio code platform. The computer that has been used 
runs Windows 11 operating system. The device processor was 
an AMD Ryzen7 5800H with 16 logical processors and eight 
cores with RAM 16 GB. The Pima Indian dataset selected 
features nine attributes as follows: number of pregnancies, 
plasma glucose concentration, diastolic blood pressure, triceps 
skinfold thickness, 2-hour serum insulin, Body Mass Index 
(BMI), Diabetes Pedigree Function, age, and class variable that 
indicates whether a patient has diabetes or not as shown in 
Table IV. After data processing the total amount of instances 
became 724, from this data 506 were used for training and 218 
for testing. Overall, DT and LR were used in five experiments. 
Both sequential and parallel computing were included in each 
of them. Parallel computing was based on threading, 
multiprocessing, and loky. 

                                          TABLE IV 
                             Evaluation Results Obtained 
 

B.  Result  
 
By applying different parallel techniques that remark on the 

methodology section, the accuracy, precision, recall, F1-scorе, 

execution time, and speedup that measured for each parallel 
technique and sequentially. The results of the evaluation 
metrics were stable, and no changes were observed while 
performing our experiments, which shows that our experiments 
did not suffer any trade-off between speed and performance. 
Thе Table IV shows a summary of the results of thе evaluation 
mеtrics found for each model for two classes, including “truе 

positivе” and “truе negative.” Both modеls pеrformеd wеll. 

However, LR outpеrformеd DT with 78% accuracy while DT 
had 70% accuracy. Thе prеcision rеsults showеd that LR has 

thе highеst prеcision in thе “truе negative” and “truе positivе” 

classеs at 77% and 83%, rеspеctivеly. In comparison, DT has 
thе lowest precision in thе “truе negative” and “truе positivе” 

classes at 74%,63% rеspеctivеly.  
The recall that measures the model’s ability to accurately 

identify all related instances of a given class contained by a 
dataset shows that LR outperformed DT in identifying “true 

negative” class with 94% while DT was 81%, whereas in 

identifying “true positive” class, DT was outstripped with 53% 
and LR with 50%. For F1-score that reflects the balance 
between precision and recall indicates that LR had a better 
score than DT, this concludes that LR was more accurate in 
predicting diabetes than DT. 

The data used shows how applying the parallelization 
technique to LR and DT models minimizes execution times. 
Three parallel approaches employed are Threading, 
multiprocessing, and multiprocessing with Loky, each of them 
has its outcome. The speedup values for linear regression, 
which range from roughly 3.1 to 3.9, show us that all 
parallelization techniques perform better than the sequential 
approach, with multiprocessing producing the maximum 
speed-up. While the decision tree model also satisfier results 
from parallelization, the speedup values are lower compared to 
LR, ranging from about 1.15 to 1.42, with Threading providing 
the best increase of the speed in this model. The calculated 
efficiency values, which range from approximately 0.7759 to 
0.9853 for Linear Regression and from 0.2884 to 0.3555 for the 
Decision Tree, reveal how effectively the parallelization 
techniques utilize the available processors knowing that Values 
closer to 1 have higher efficiency, which makes the efficiency 
of LR is also better than DT. As a result, the Linear Regression 
model is more adaptable to parallelization than the Decision 
tree, especially the Multiprocessing technique. The Decision 
Tree still performs respectably with Threading. The execution 
times, speedups, and efficiency for various approaches and 
classifiers are displayed in the table below in Table V, also in 
Fig.2 and Fig.3.  

 

Fig.2 Execution time for both models 

 

 

  DT LR 

  Class 0 Class 1 Class 0 Class 1 
(true 
negative) 

(true 
positive) 

(true 
negative) 

(true 
positive) 

Precision 74% 63% 77% 83% 

Recall 81% 53% 94% 50% 

F1-score 77% 57% 85% 62% 

Accuracy 70% 78% 



 

 

Fig.3 Compare the two models’ speed up 

TABLE V     
The experiment results summary 

 Although the performance of parallel techniques can vary 
amongst several hardware characteristics, it is important to 
know that not all models respond positively to a particular 
technique for instance, a single technique that produces 
accurate results for one model could produce poor results for a 
different model. Therefore, before putting parallel procedures 
into practice, it is necessary to study and evaluate their 
compatibility with various models carefully. 

                                           
 

 
 
 
                                             TABLE VI 

        Summarizes the Results of the Related Work 
 

Study  Algorithm   Dataset Performance 
measure  

Result 

 [2] SVM 
 
RF, KNN 

PIMA  
 
German 
dataset 

accuracy 
 

74% 
 
98.7% 

 [3] SVM 
 
RF 

PIMA accuracy 
 

81.4% 
 
83% 

 [5] RF 
KNN, LR, 
DT, SVM, 
GB 

PIMA accuracy 
 

78% 
 
65% 

 [6] SVM, 
KNN 

PIMA accuracy 77% 

 [7] LDA, 
SVM, 
RNN 

Private 
dataset 

accuracy 
 
 
 

 
%97 
%92 
94.6% 

 [8] KNN and 
LR 
DT 
RF 
 

John 
Diabete
s  

accuracy 78% 
99% 
76%. 

 [10] SVM Private 
dataset 

accuracy       Parallel 77% 

sequential 74% 

 
According to the comparison in Table VI, we have found 

research studies related to computing. One of these studies is 
based on parallel computing with GPUs, while the others are 
based on sequential computing. Upon analysis, it was observed 
that even though the accuracy of both algorithms is good, there 
are certain issues with the amount of time consumed by each 
algorithm. 

V. CONCLUSION AND FUTURE WORK 

In conclusion, diabetes is a disease that causes many serious 
complications that greatly affect human health and should be 
predicted early with high performance, less computation time, 
and more accuracy to save many human lives. The present 
study was designed and focused on advancing the prediction 
and classification of diabetes through the implementation of 
parallel processing techniques to expedite machine learning 
model training. This study has presented the ML predictive 
algorithms, specifically focusing on DT and LR classifiers. The 
algorithms were executed sequentially, and subsequent parallel 
experiments were conducted utilizing multiprocessing, loky 
backend, and threading backend. The trial was conducted using 
the PIDD and executed through the utilization of Google Colab. 
This research also discussed the performance of each technique 
in both models was thoroughly evaluated, measuring execution 
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time and speed-up. The main finding can be summarized as 
employing parallel processing techniques significantly reduced 
the sequential execution time of the models, with a maximum 
speed-up of 3.9 achieved for the LR model using Python 
multiprocessing backend with four jobs. Remarkably, there was 
no compromise between performance and execution speed. 
Additionally, The LR model achieved the highest accuracy of 
78%, surpassing the DT model, which attained 70%. 

Future research should therefore concentrate on the 
investigation of improvements that can be made by utilizing 
larger datasets and exploring other machine-learning and deep-
learning algorithms. This work lays the groundwork for future 
research and developments in the fields of machine learning 
process optimization and healthcare applications. The 
integration of deep learning techniques with parallel computing 
is expected to shape the future trend of diabetes machine 
learning algorithms, which will address diabetes production 
through parallel computing. This evolution has the potential to 
greatly advance medical applications and support the ongoing 
development of diabetes-related predictive models. 
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