
 Machine Learning Model for Diabetes Prediction

Using Parallel Computing: Comparative Study

Shahd Alsaleh1, Maha Alsayed1, Ghadi Alkehily1, Taif Alahmadi1,
Lina Alrefi1 and Malak Aljabri2.

1Department of Computer Science and Artificial Intelligence, College of Computing, Umm
Al-Qura University

Makkah 21955, Saudi Arabia

2Department of Computer and Network Engineering, College of Computing Umm
Al-Qura University

Makkah 21955, Saudi Arabia

1shahdAls1@outlook.com
1maha.a.123.15@gmail.com

1ghadijalkehaily@gmail.com
1taif.alahmadi300@gmail.com

1l_alrefi@hotmail.com
2mssjabri@uqu.edu.sa

Abstract— Diabetes has become one of the most common and
challenging health conditions in the world because it alters how
the body uses glucose, an essential source of energy, and can
damage organs including the kidneys, heart, eyes, and other issues
in addition to the blood. Therefore, it is necessary to develop a
system that can accurately identify diabetes patients using
medical. indicators. Artificial intelligence (AI)-based techniques
such as Machine Learning (ML) have proven to be effective in this
regard. Sequential machine learning methods utilize a single
underlying hardware processing element, thus having poor real-
time prediction efficiency. Moreover, these approaches may
struggle to handle large amounts of data due to their time-
consuming nature. Parallel computing has been widely applied
techniques that utilize multiple hardware processing elements to
increase the application's computation time. In this study, we
utilized parallel techniques in Python to train ML models and
provided a comparative study for different parallel techniques.
We used the Pima Indian Diabetes Dataset (PIDD), conducted five
different experiments, and provided a comparative performance
evaluation. We deployed two ML models which are Decision Tree
(DT) and Linear Regression (LR). For each model, we compared
the sequential execution with three different parallel Python
techniques (multithreading, multiprocessing, and loky), each
utilizing four cores. Our results showed that LR with
multiprocessing technique achieved a higher accuracy of 78% and
greater speedup of 39. The results in general indicated that
parallel execution outperforms sequential execution in terms of
speed. This comparative study provides valuable insights into how
to optimize machine learning models for diabetes detection and
highlights the usefulness of parallel computing technologies in
healthcare applications.

Keywords— parallel processing. Diabetes. machine learning.
Decision Tree. Linear Regression

I. INTRODUCTION
Diabetes affects 422 million people worldwide and is

expected to increase to 490 billion by 2030, according to the
World Health Organization [1]. Diabetes is a major chronic
disease whose prevalence is continuously increasing. Diabetes
impacts the body's ability to metabolize glucose, or sugar,
which is a vital source of energy. Diabetes is classified into two
types, which are type 1 diabetes and type 2 diabetes. Type 1
diabetes is an autoimmune condition in which the immune
system mistakenly attacks and destroys insulin-producing beta
cells in the pancreas. Type 2 diabetes is insulin resistance,
where the body’s cells can’t process insulin properly, and it can

affect children and adults. Over time, the pancreas stops
producing enough insulin. Lifestyle factors, genetics, and
obesity are common risk factors. Diabetes that goes
undiagnosed and untreated can cause blood sugar levels to
fluctuate and, in extreme cases, damage organs such as the
kidneys and eyes. Early and precise diagnosis of diabetes
mellitus is a significant challenge for healthcare professionals,
particularly in its early stages [1].

The healthcare sector manages extensive databases,
including structured, semi-structured, and unstructured data.
These databases provide fertile ground for the application of
big data analytics. By using machine learning techniques to
analyze these healthcare databases, it becomes possible to
develop AI models capable of detecting diabetes. These models
have the potential to greatly enhance early diagnosis, and
personalized treatment plans, and improve patient care.

Artificial intelligence (AI) techniques such as machine
learning (ML) have been increasingly utilized in the medical

sector and offered valuable support by providing a reference
point for gaining preliminary insights into different diseases in
terms of prediction, classification, or detection which greatly
contributed to reducing the workload in healthcare. A
considerable amount of research has been dedicated to
automating diabetes prediction through ML techniques, often
utilizing different open-source datasets for analysis. Predicting
diabetes early and with accurate results can save many human
lives. The purpose of such investigation is to assess the ML
classifiers that can predict the probability of disease in patients
with the greatest precision and accuracy.
 Unfortunately, ML models need a lot of computational
power, which results in a longer computation time. Usually, in
single-processor environments, the ML algorithms cause a
significant delay in model processing from training to
classification. Sequential ML computing is often inappropriate
for handling huge datasets. On the other hand, parallel
computation offers exceptional opportunities to implement
these large-scale problems due to their ability to efficiently
exploit multiple processor environments. In our study, the main
purpose is to increase the ML model prediction speed by
applying different parallel computing techniques for the ML
models and conducting a comparative evaluation study. We
studied the three parallel ML techniques in Python namely:
multithreading, multiprocessing, and loky which can be
effectively deployed to reduce the execution time for the ML
algorithms. Those three techniques were studied in Linear
Regression (LR) and Decision Tree (DT) algorithms. LR and
DT are both fundamental ML algorithms utilized in supervised
learning, each offering unique approaches to predictive
modelling. LR establishes optimal linear functions by analysing
dataset relationships, while DT categorizes data and forecasts
outcomes through structured flowcharts. Despite their, both
methods share the goal of facilitating accurate predictions and
informing decision-making processes.

The key contributions of this paper can be summarized as
follows:

• Conducting comparative performance evaluation for the
sequential and three different parallel Python techniques
(multithreading, multiprocessing, and loky) utilizing four
processing cores on two ML models (LR and DT) to
enhance the detection of Diabetes.

• Making a significant contribution to AI, healthcare, and
parallel computing literature, especially with limited studies
available for comparing the performance of parallel
techniques on ML in this domain.
This paper is structured as follows: Section II clarifies the

previous studies that deployed sequential and parallel ML
techniques. Section III presents the methodology followed to
carry out the experiments. Section IV discusses the
experimental setup and results obtained. Section V provides a
conclusion and future work.

II. literature Review

Diabetes is a long-term medical condition characterized by
persistently high blood sugar levels brought on by inadequate
insulin production, inadequate insulin utilization, or both. The

use of predictive ML algorithms in the context of diabetes
mellitus is explored in this section. However, there is still room
for improvement in the Diabetes prediction. The objective of
this study is to develop ML algorithms in parallel. It also aims
to highlight the significance of early detection to reduce
complications and to clarify the critical role that predictive ML
algorithms play in the management of diabetes. In this section,
we discuss several related articles.

A study aimed to identify the most effective ML model for
diabetes prediction by Kangra et al. [2] compared different
algorithms including Naïve Bayes (NB), Random Forest (RF),
Support Vector Machine (SVM), K-Nearest Neighbor (KNN),
Decision Tree (DT), and Logistic Regression (LR), to analyze
performance indices and error rates. The used dataset was The
German dataset and the Pima Indian Diabetic (PID) dataset
from Kaggle, with analysis conducted in WEKA 3.8.6 software
using Python. The PID dataset comprised 9 attributes and 768
instances, with the goal of diabetes classification. The German
dataset also had nine variables. In both cases, the primary
objective was diabetic status determination. SVM performed
well with a 74% accuracy for the PID dataset, while KNN and
RF excelled, achieving an impressive 98.7% accuracy for the
German dataset. The researchers suggested exploring hybrid
models and assessing their performance alongside other
algorithms, providing valuable insights for further research.

A study by Sivaranjani S et al. [3] aimed to predict diabetes
using ML algorithms, which support SVM and RF. They used
the PIMA [4], dataset and performed feature selection using the
“wrapper method” to increase the efficiency of the model and
reduce its complexity. Special analytical tools Principal
Component Analysis (PCA) was used for dimensionality
reduction, optimizing dataset complexity effective modeling.
The results showed that feature selection affected RF and SVM
classifiers accuracy, the proposed technique achieved 83%
accuracy with RF and 81.4% with SVM. Future research may
refine the feature selection and explore new dimensionality
reduction techniques to move forward and increase the
efficiency of the model.

A study by Soni M еt al. [5] suggested using various
classification ML methods for early diabetes prediction, which
are KNN, LR, DT, SVM, Gradient Boosting (GB), and RF. All
these classifications and ensemble methods were applied to
detect which of them gave the highest accuracy for diabetes
prediction. The PIMA [4] was used to gather the data and
underwent preprocessing in two steps, which were Missing
Values removal and splitting of data, utilized in all the
algorithms implemented using Python. While all these
algorithms demonstrated accuracy еxcееding 65%, RF stood

out with the highest accuracy among them at 78%, making it
the most accurate algorithm in predicting diabetes.

A study by Sarwar Muhammad et al. [6] proposed the
deployment of ML algorithms to predict diabetes and help
healthcare professionals make timely decisions on the health
and treatment of the patient. The study compared the
performance of six different algorithms which are SVM, DT,
LR, RF, KNN, and NB, the dataset used was the Pima Indians
Diabetes [4]. The dataset was divided into two sections training

data (70%) and data (30%). The results showed that SVM and
KNN achieved the highest accuracy of 77% compared to other
algorithms tested.

In a study conducted by Sierra-Sosa et al. [7], researchers
proposed using parallel deep-learning (DL) techniques on
multiple Graphics processing units (GPUs) for predicting
adverse events in patients with type 2 diabetes. The study used
a database from the Basque Health Service that contained
records of 150,156 patients diagnosed with type 2 diabetes
mellitus. The algorithms implemented in this study included
Logistic Regression (LR), Linear Discriminant Analysis
(LDA), Quadratic Discriminant Analysis (QDA), Support
Vector Machines (SVM), and Recurrent Neural Network
(RNN). The algorithms were implemented in TensorFlow using
Python as the programming language. The results of the study
showed that LDA and SVM outperformed the other algorithms
in predicting Major Amputations and acute Myocardial
Infarction with 97% accuracy. LDA balanced and SVM
balanced achieved 92% accuracy in predicting Hospital
Admission for avoidable causes. RNN with a balanced dataset
performed best, achieving 94.6% accuracy in predicting at least
one disease, surpassing LDA balanced and SVM weighted by
7.4%. The paper suggests expanding the dataset and exploring
additional deep-learning techniques to enhance prediction
accuracy in the future.

 A study by Rani K [8] aimed to develop a highly accurate
system for early diabetes prediction by combining various ML
methods. The study used the John Diabetes Database[9], which
had nine features, with 2000 data points. The study used John’s

diabetes database, which contains nine attributes, with 2,000
data points. The study compared the accuracy of training and
testing diabetes prediction when implemented by Python on
several classification methods, including KNN, LR, DT, SVM,
and RF. In the study, KNN and LR achieved an accuracy of up
to 78%, while (DT) on all previous algorithms with an accuracy
of 99%, and the most influential attribute was “glucose”. RF

reported an accuracy of 94%, with “glucose” and “BMI” as key

attributes. SVM delayed accuracy by 76%.
A study conducted by Shrivastava et al. [10] proposed a

parallel algorithm based on an SVM to predict the likelihood of
diabetes in people using a large dataset from S. S. Medical
College, Rewa, Master Chart. The dataset was distributed over
multiple machines to process it in parallel, and the algorithm
was implemented in MATLAB 7.12.7, R2011B on a machine
with 3GB RAM. The study showed that the parallel SVM has
substantially lower training time compared to the sequential
SVM while maintaining similar accuracy levels. The parallel
implementation also showed the possibility for scalability with
multiple machines, resulting in a 1/3 reduction in training time.
However, for future improvements, researchers can enhance
the accuracy by improving the selection of the starting point for
K-means clustering when dividing data into large clusters.

Our work in this paper is similar to the previous related
research in terms of using ML for Diabetes prediction.
However, we provided a comparative performance evaluation
study for different parallel techniques with ML models. This
comparative study demonstrates the value of parallel

computing technology in healthcare applications and offers
insightful information about how to optimize ML models for
diabetes detection.

 TABLE I

 Literature Review Summary

III. METHODOLOGY

 We trained the parallel ML models in Python using various
multiprocessing and multithreading strategies. Then, we
measured the training time in sequential execution and
compared it to the parallel execution time, with a publicly
accessible dataset, which distinguishes diabetes from other
medical conditions. An overview of the methodology steps that
were performed is demonstrated in Fig.1 and is covered in more
detail in the following subsections.

Year Algorithm Dataset Performance
measures

2023 NB, RF, SVM,
KNN,DT and LR

Germany and Pima
Indian diabetic
(PID) diabetes
datasets

Identifying the
accuracy

2021 SVM and (RF). The PIMA Indianas
Diabetes (PID)

The performance
measures
mentioned in the
paper are test
accuracy,
validation
accuracy,
sensitivity, and
specificity

2020 KNN, LR,
DT,RF ,GP and
SVM

The PIMA Indianas
Diabetes (PID)

Identifying the
accuracy

2020 KNN, LR,
DT,RF and SVM

John Diabetes
Database

Identifying the
accuracy

2019 SVM From S. S. Medical
College, Rewa,
Master Chart

Identifying the
accuracy and time
in sec.

2018 SVM, DT, LR,
RF, KNN, and
NB

The PIMA Indianas
Diabetes (PID)

Identifying the
accuracy

2011 LR,
LDA,QDA,SVM,
and RNN

Form. The Basque
Health Service

Identifying the
accuracy,
precision, recall,
and F1-score.

 Fig.1 The methodology adopted

A. Dataset Description:

 TABLE II
 Data Set Statistics

The dataset used was developed by the National Institute of
Diabetes and Digestive and Kidney Diseases (PIMA), and its
primary purpose is to predict the likelihood of a patient
developing diabetes based on specific diagnostic tests. This
dataset has been updated biennially since 1965[7].

Tables II and III, show the diabetic dataset characteristics,
data type, and statistics. The classifier predicts whether the
patient has diabetes based on the dataset characteristic, which
is intended for binary classification, with class value 1 showing
persons who have gotten a “diagnosis of diabetes” and class 0

standing for those who have not obtained a diabetes diagnosis.
There are 768 records in the dataset, 500 for training and

268 for testing, with no missing values. It is also worth noting

that the dataset holds impractical values like zero for body mass
index and insulin. There are a total of nine features, eight of
which are independent, and one is target.

 TABLE III
 Attribute Description

Sl.No Attribute Description

1 No. of
times Pregnant

Discrete
data of type int64

2 Plasma
Glucose

Concentration

Discrete
data of type int64

3 Diastolic
Blood Pressure

(mm Hg)

Discrete
data of type int64

4 Skin
Thickness (mm)

Discrete
data of type int64

5 Insulin
mu U/ml

Discrete
data of type int64

6 BMI
(Weight/ Height)

(kg/m2)

Continuous
data of type int64

7 Diabetes
Pedigree Function

Continuous
data of type int64

8 Age Discrete
data of type int64

9 Outcome
class

Discrete
data of type int64

B. Data Preprocessing

We noticed biologically implausible zero values in the
PIMA dataset, so we employed a hybrid approach to manage
zero values, eliminating missing values from the parameters
that have the greatest effect on the outcome and normalizing
the remaining parameters using the median, to create efficient
models capable of accurately detecting cases of diabetes and
non-diabetes. We normalized Skin Thickness and Insulin
attributes by filling null values by median and then eliminating
zero values by median because blood pressure and glucose are
critical for deciding diabetes and their null fraction is extremely
small, so it should be better to remove invalid entries. We then

PIDD Dataset

768 Samples

8 I/P Attributes

2 O/P Classes

9 Total Attributes

Nil Missing values

Nil Noisy-Attributes

separated the clean dataset into two datasets: training 70% and
testing 30%, using the sk-learn train split technique[11].

C. Classification Phase

 We assessed two ML, which are DT and LR, to train and test
the dataset for predicting diabetes. Both sequential and parallel
training methods were used for all the models. In sequential
training, only one execution thread was used to train the
models; in parallel training execution, 4 threads were used to
train the models.

1) Sequential Training: In terms of sequential
training, The DT and LR models were sequentially trained
to gather performance metrics and keep track of execution
time.

DT is a supervised learning algorithm used to solve
classification and regression problems. It is usually
preferred in such cases. The classifier has a tree-like
structure, where the internal nodes represent the dataset’s

features, the branches decide the decision-making process,
and each leaf node stands for the classification result [12].

LR is a type of supervised ML algorithm that decides
how dependent a variable is, and how one or more
independent features are related linearly. The algorithm
seeks out the best linear equation that can predict the value
of the dependent variable based on the independent
variables [13].

2) Parallel Training: In the following subsections,
the techniques adopted for parallel training of the DT and
LR models are described. Threading Backend and Number
of Cores in Python Parallel In this technique, the sklearn
joblib library was imported into the working environment
to use Python’s built-in parallel backend threading
features. The environment’s ML models can be parallel

trained by using the commands import joblib and from
joblib import parallel backend. which enables them to
utilize all the machine’s available cores, speeding up the
training process. Moreover, we added another argument
called n_jobs that gives us more control over the number
of active threads or CPU cores, which means that we use
multi-threading to parallelize the training process and
allocate a specific number of threads for that purpose. For
example, n_jobs = -1 instructs the computer to use every
available thread, while n_jobs = 1 runs the program in a
single thread, and so on. Before fitting the model can be
written this line of code “with

parallel_backend(’threading’, n_jobs=#)” where #

represents the number of cores or processes to utilize to
train the models parallelly.
 Multi-Processing Backend and Number of Cores in
Python Parallel This technique makes use of the same code
and libraries as those mentioned above. However, it makes
use of processes rather than threads. The
“multiprocessing” backend utilizes individual processes,
making it a suitable choice for parallelism within a single
host. However, it’s considered a legacy approach. The

code for the “multiprocessing” technique is implemented

using “with parallel_backend (’multiprocessing’,

n_jobs=#) ”Loky Backend and Number of Cores in Python

Parallel. The parallel backend libraries and codes of
Python are also used in this technique. The “loky” backend

allows for adaptive parallelism and is particularly valuable
for tasks that benefit from efficient multi-processing
execution. It is based on single-host processes and is
primarily based on multi-processing execution. To
implement the “loky” technique, use this line “with
parallel_backend (’loky’, n_jobs=#) ”.

D. Evaluation Phase

Different performance metrics can be used to compare ML
classifiers. In this study, the models that were deployed were
evaluated and their performances were compared using
accuracy, precision, recall, and F1-score. The confusion matrix,
which is used to evaluate the accuracy of the classifier, supplies
a comparison of the model’s predicted classifications alongside

the actual classifications and it consists of four main values. In
addition, the execution times for both sequential and parallel
programs were given in seconds, and the speedup was
calculated using this data.
• True Positive (TP): The model correctly predicts that a

person has diabetes, and the person does have diabetes.
• False Positive (FP): The model incorrectly predicts that a

person has diabetes when the person does not have
diabetes.

• True Negative (TN): The model correctly predicts that a
person does not have diabetes, and the person does not
have diabetes.

• False Negative (FN): The model incorrectly predicts that a
person does not have diabetes when the person does have
diabetes.
 Accuracy is the percentage of how often a classification
ML model is correct overall. By comparing the number of
accurate predictions to the total number of instances in a
dataset and calculated using the following formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)

Precision refers to the number of true positives divided by
the total number of positive predictions and is calculated using
the following formula:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)

Recall is the proportion of correctly predicted classes to all
positive classes and is calculated using the following formula:

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)

 F1-score supplies a single metric that balances the trade-
off between precision and recall, and uses the following
formula:

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = (2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+ 𝑅𝑒𝑐𝑎𝑙𝑙)

 Speedup is the proportion of the time it takes to complete a
task sequentially to the time it takes to complete the same task
in parallel calculated by following the formula:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = (𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒)
/(𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒)

IV. RESULT AND DISCUSSION

A. Experimental Setup

 To conduct the experiments, we used Python 3.11.5 on the
Visual Studio code platform. The computer that has been used
runs Windows 11 operating system. The device processor was
an AMD Ryzen7 5800H with 16 logical processors and eight
cores with RAM 16 GB. The Pima Indian dataset selected
features nine attributes as follows: number of pregnancies,
plasma glucose concentration, diastolic blood pressure, triceps
skinfold thickness, 2-hour serum insulin, Body Mass Index
(BMI), Diabetes Pedigree Function, age, and class variable that
indicates whether a patient has diabetes or not as shown in
Table IV. After data processing the total amount of instances
became 724, from this data 506 were used for training and 218
for testing. Overall, DT and LR were used in five experiments.
Both sequential and parallel computing were included in each
of them. Parallel computing was based on threading,
multiprocessing, and loky.

 TABLE IV
 Evaluation Results Obtained

B. Result

By applying different parallel techniques that remark on the

methodology section, the accuracy, precision, recall, F1-scorе,

execution time, and speedup that measured for each parallel
technique and sequentially. The results of the evaluation
metrics were stable, and no changes were observed while
performing our experiments, which shows that our experiments
did not suffer any trade-off between speed and performance.
Thе Table IV shows a summary of the results of thе evaluation
mеtrics found for each model for two classes, including “truе

positivе” and “truе negative.” Both modеls pеrformеd wеll.

However, LR outpеrformеd DT with 78% accuracy while DT
had 70% accuracy. Thе prеcision rеsults showеd that LR has

thе highеst prеcision in thе “truе negative” and “truе positivе”

classеs at 77% and 83%, rеspеctivеly. In comparison, DT has
thе lowest precision in thе “truе negative” and “truе positivе”

classes at 74%,63% rеspеctivеly.
The recall that measures the model’s ability to accurately

identify all related instances of a given class contained by a
dataset shows that LR outperformed DT in identifying “true

negative” class with 94% while DT was 81%, whereas in

identifying “true positive” class, DT was outstripped with 53%
and LR with 50%. For F1-score that reflects the balance
between precision and recall indicates that LR had a better
score than DT, this concludes that LR was more accurate in
predicting diabetes than DT.

The data used shows how applying the parallelization
technique to LR and DT models minimizes execution times.
Three parallel approaches employed are Threading,
multiprocessing, and multiprocessing with Loky, each of them
has its outcome. The speedup values for linear regression,
which range from roughly 3.1 to 3.9, show us that all
parallelization techniques perform better than the sequential
approach, with multiprocessing producing the maximum
speed-up. While the decision tree model also satisfier results
from parallelization, the speedup values are lower compared to
LR, ranging from about 1.15 to 1.42, with Threading providing
the best increase of the speed in this model. The calculated
efficiency values, which range from approximately 0.7759 to
0.9853 for Linear Regression and from 0.2884 to 0.3555 for the
Decision Tree, reveal how effectively the parallelization
techniques utilize the available processors knowing that Values
closer to 1 have higher efficiency, which makes the efficiency
of LR is also better than DT. As a result, the Linear Regression
model is more adaptable to parallelization than the Decision
tree, especially the Multiprocessing technique. The Decision
Tree still performs respectably with Threading. The execution
times, speedups, and efficiency for various approaches and
classifiers are displayed in the table below in Table V, also in
Fig.2 and Fig.3.

Fig.2 Execution time for both models

 DT LR

 Class 0 Class 1 Class 0 Class 1
(true
negative)

(true
positive)

(true
negative)

(true
positive)

Precision 74% 63% 77% 83%

Recall 81% 53% 94% 50%

F1-score 77% 57% 85% 62%

Accuracy 70% 78%

Fig.3 Compare the two models’ speed up

TABLE V
The experiment results summary

 Although the performance of parallel techniques can vary
amongst several hardware characteristics, it is important to
know that not all models respond positively to a particular
technique for instance, a single technique that produces
accurate results for one model could produce poor results for a
different model. Therefore, before putting parallel procedures
into practice, it is necessary to study and evaluate their
compatibility with various models carefully.

 TABLE VI

 Summarizes the Results of the Related Work

Study Algorithm Dataset Performance
measure

Result

 [2] SVM

RF, KNN

PIMA

German
dataset

accuracy

74%

98.7%

 [3] SVM

RF

PIMA accuracy

81.4%

83%

 [5] RF
KNN, LR,
DT, SVM,
GB

PIMA accuracy

78%

65%

 [6] SVM,
KNN

PIMA accuracy 77%

 [7] LDA,
SVM,
RNN

Private
dataset

accuracy

%97
%92
94.6%

 [8] KNN and
LR
DT
RF

John
Diabete
s

accuracy 78%
99%
76%.

 [10] SVM Private
dataset

accuracy Parallel 77%

sequential 74%

According to the comparison in Table VI, we have found

research studies related to computing. One of these studies is
based on parallel computing with GPUs, while the others are
based on sequential computing. Upon analysis, it was observed
that even though the accuracy of both algorithms is good, there
are certain issues with the amount of time consumed by each
algorithm.

V. CONCLUSION AND FUTURE WORK

In conclusion, diabetes is a disease that causes many serious
complications that greatly affect human health and should be
predicted early with high performance, less computation time,
and more accuracy to save many human lives. The present
study was designed and focused on advancing the prediction
and classification of diabetes through the implementation of
parallel processing techniques to expedite machine learning
model training. This study has presented the ML predictive
algorithms, specifically focusing on DT and LR classifiers. The
algorithms were executed sequentially, and subsequent parallel
experiments were conducted utilizing multiprocessing, loky
backend, and threading backend. The trial was conducted using
the PIDD and executed through the utilization of Google Colab.
This research also discussed the performance of each technique
in both models was thoroughly evaluated, measuring execution

 Seque
ntial

Threading
Multiprocessin

g
Multiprocessing

with Loky

Execut

ion
Time
in(S)

Ex
ec
uti
on
Ti
me
in(
S)

Sp
ee
du
p

Eff
ici
en
cy

Exe
cuti
on

Tim
e

in(S
)

Sp
ee
du
p

E
ff
ic
ie
n
c
y

Ex
ec
uti
on
Ti
me
in(
S)

Speed
up

E
f
f
i
c
i
e
n
c
y

DT 0.011
0.0
08

1.4
22

0.3
56

0.00
9

1.2
38

0.
3
0
9

0.0
10

1.153

0
.
2
8
8

LR 0.013
0.0
04

3.1
04

0.7
75
9

0.00
3

3.9
41
2

0.
9
8
5
3

0.0
04
0

3.182

0
.
7
9
6

time and speed-up. The main finding can be summarized as
employing parallel processing techniques significantly reduced
the sequential execution time of the models, with a maximum
speed-up of 3.9 achieved for the LR model using Python
multiprocessing backend with four jobs. Remarkably, there was
no compromise between performance and execution speed.
Additionally, The LR model achieved the highest accuracy of
78%, surpassing the DT model, which attained 70%.

Future research should therefore concentrate on the
investigation of improvements that can be made by utilizing
larger datasets and exploring other machine-learning and deep-
learning algorithms. This work lays the groundwork for future
research and developments in the fields of machine learning
process optimization and healthcare applications. The
integration of deep learning techniques with parallel computing
is expected to shape the future trend of diabetes machine
learning algorithms, which will address diabetes production
through parallel computing. This evolution has the potential to
greatly advance medical applications and support the ongoing
development of diabetes-related predictive models.

REFERENCES

[1] “Diabetes.” Accessed: Jan. 24, 2024. [Online]. Available:
https://www.who.int/news-room/fact-sheets/detail/diabetes

[2] K. Kangra and J. Singh, “Comparative analysis of predictive machine

learning algorithms for diabetes mellitus”, Bulletin of Electrical Engineering
and Informatics, vol. 12, no. 3, pp. 1728–1737, Jun. 2023, doi:
10.11591/EEI.V12I3.4412.

[3] S. Sivaranjani, S. Ananya, J. Aravinth, and R. Karthika, “Diabetes

Prediction using Machine Learning Algorithms with Feature Selection and
Dimensionality Reduction”, in 2021 7th International Conference on Advanced
Computing and Communication Systems (ICACCS), 2021, vol. 1, pp. 141–146,
doi: 10.1109/ICACCS51430.2021.9441935.

[4] Pima Indians Diabetes Database. (n.d.). Retrieved February 27, 2024,
from https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

[5] M. Soni and D. S. Varma, “Diabetes Prediction using Machine Learning

Techniques”, International Journal of Engineering Research & Technology,
vol. 9, no. 9, Oct. 2020, doi: 10.17577/IJERTV9IS090496.

[6] M. A. Sarwar, N. Kamal, W. Hamid, and M. A. Shah, “Prediction of

Diabetes Using Machine Learning Algorithms in Healthcare”, 2018 24th
International Conference on Automation and Computing (ICAC), pp. 1–6,
2018.

[7] D. Sierra-Sosa et al., “Scalable healthcare assessment for diabetic patients

using deep learning on multiple GPUs,” IEEE Transactions on Industrial

Informatics, vol. 15, no. 10, pp. 5682–5689, Oct. 2019, doi:
10.1109/tii.2019.2919168.

[8] K. M. J. Rani, “Diabetes Prediction Using Machine Learning”,

International Journal of Scientific Research in Computer Science, Engineering
and Information Technology, pp. 294–305, Jul. 2020, doi:
10.32628/CSEIT206463.

[9] diabetes. (n.d.). Retrieved February 27, 2024, from
https://www.kaggle.com/datasets/johndasilva/diabetes

[10] K. S. Naveen, P. Saurabh, and V. Bhupendra, “An efficient approach

parallel support vector machine for classification of diabetes dataset,”

International Journal of Computer Applications, vol. 36, no. 6, pp. 19–24, Dec.

2011, [Online]. Available:
https://research.ijcaonline.org/volume36/number6/pxc3976342.pdf

[11] “AnalyzingPima-Indian-Diabetes-dataset”.

https://medium.com/analytics-vidhya/analyzing-pima-indian-diabetes-dataset-
36d02a8a10e5.

[12] “Decision Tree Algorithm in Machine Learning - Javatpoint”.

https://www.javatpoint.com/machine-learning-decision-tree-classification-
algorithm.

[13] “LINEAR REGRESSION IN MACHINE LEARNING - GEEKSFORGEEKS”.

HTTPS://WWW.GEEKSFORGEEKS.ORG/ML-LINEAR-REGRESSION/.

https://medium.com/analytics-vidhya/analyzing-pima-indian-diabetes-dataset-36d02a8a10e5.
https://medium.com/analytics-vidhya/analyzing-pima-indian-diabetes-dataset-36d02a8a10e5.
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm.
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm.
https://www.geeksforgeeks.org/ml-linear-regression/

