

Finding The Best Understandability for Android

GUI Architectural Application Using Empirical

Evaluation

Kurniadi1, Yhudha Juwono2, Umi Laili Yuhana3

Departement of Informatics, Institut Teknologi Sepuluh Nopember

Surabaya, Indonesia
16025231002@student.its.ac.id

26025231055@student.its.ac.id

3yuhana@if.ts.ac.id

Abstract—Software Understandability is a pivotal concept

emphasizing the need for a system to be presented in a manner

that engineers can effortlessly comprehend. When a system is

inherently understandable, engineering operations become

streamlined, promoting efficiency in the development process.

The significance of code understanding cannot be overstated, as it

directly impacts productivity, reduces errors, and fosters an

environment conducive to innovation. This paper delves into the

realm of software understandability, placing a specific focus on

two mobile-based development architectures: MVVM and

VIPER. These architectures are recognized for their ability to

break down software components with enhanced abstractions,

contributing to a more coherent development structure. The

primary objective of this research is to quantitatively measure the

best understandability between MVVM and VIPER through the

application of measurement metrics extracted from both project

using MetricReloaded and SonarQube. Upon analysis, the

measurement results reveal that VIPER demonstrates superior

understandability when compared to MVVM. This finding

underscores the potential of VIPER to not only facilitate a more

comprehensible development process but also to serve as a

catalyst for increased innovation within the realm of software

development.

Keywords—MVVM, VIPER, Understandability, GUI

Architecture

I. INTRODUCTION

 In the domain of software development, a fundamental
prerequisite for effective maintenance and evolution lies in the
comprehension of software code. Without a deep understanding
of the codebase, developers encounter significant challenges
when it comes to debugging or enhancing software
functionalities in a timely manner. The measurement of code
understandability can serve as a valuable compass for
developers, aiding the`m in crafting high-quality code [1].
Moreover, it can assist in estimating the effort required to
modify code components. This introduction lays the
groundwork for a closer exploration of the concept of 'software
understandability' and its pivotal role in contemporary software
engineering practices.

In the realm of mobile application development, especially
in Android, there are popular architectures that are well-suited
for use. MVVM (Model View ViewModel) and VIPER (View
Interactor Presenter Entity and Router) are considered
appropriate for applications across various scales—be it small,
medium, or large. In addition to their excellent performance [2],
[3], their efficient abstractions in architecture position them as
preferable choices compared to MVC and MVP. [4].

 MVVM is an architecture invented by Microsoft’s architects
Ken Cooper and Ted Peters, to aim simplicity of event driven
programming interfaces. MVVM simplify two way
communication between UI XML files with their C# View files.
MVVM concept is a variation of on Martin Fowler’s
Presentation Model design pattern. VIPER is an architecture
concept based on Uncle Bob’s Clean Architecture. VIPER aim
to have very loose code cohesion between each layer of
abstraction. This architecture heavily influenced by Onion
Architecture and used to promote SOLID principles of
programming.

 The main contribution of this research is to provide a deep
understanding of the characteristics of understandability in the
context of Android application development architectures,
particularly in the comparison between the MVVM and VIPER
architectures. By conducting a comprehensive evaluation of
these two architectures, the research aims to identify key
aspects influencing developers comprehension levels of code
structure.

 In this study, we are seeking the value of understandability
from the MVVM and VIPER architectures. The aim is to obtain
the best understandability scores that can be used to illustrate
how developers can achieve a thorough understanding of the
code. The content of this paper organized as: Section II showing
related work to measure understandability. Section III
discussing research methodology, Section IV explaining about
our application with the experiment results, Section V we will
give conclusions from our research and future work.

II. RELATED WORKS

Implementing design patterns in mobile application
development can reduce complexity and improve
maintainability [5]. Some research finds that MVVM is more
maintainable and modifiable than MVP [6]. Implementing
clean architecture has proven that the code is neater, more
readable, and easier to maintain [7].

Understandability remains a pivotal quality attribute
utilized to evaluate the clarity of object-oriented software [8].
It holds significance throughout various stages of the software
development life cycle, as any misinterpretation during these
phases can lead to the creation of a substandard product. Given
that mobile applications, much like other software entities,
undergo continuous maintenance and evolution, a thorough
understanding of them is indispensable for ensuring their
maintainability, reliability, quality, and reusability.

The measurement of software quality utilizes the ISO 91261
standard, which is divided into six characteristics, including

functionality, reliability, maintainability, usability, efficiency,
and portability [9]. This method is applicable universally to all
types of software, but there is no specific explanation
addressing understandability.

One factor in understandability is the complexity of the
program code. Previous research has proposed measuring
complexity using metrics such as Line of Code (LOC),
Halstead Complexity (HC), and Cyclomatic Complexity
(CC)[10]. Recent studies have also introduced Cognitive
Complexity, Code Readability, and CMI to gauge the level of
understandability [11]. Cognitive Complexity, recognized in
recent research by Marvin Boron [12], proves to be a superior
alternative to other measures, especially when combined with
McCabe’s Cyclomatic Complexity [13]. Although challenging
to measure, cognitive complexity must be assessed
qualitatively [14].

The proposed metric for understandability aims to gauge
object-oriented applications, providing a clearer framework for
assessing the understandability index in an application [15].
However, it does not specifically address measurements for
Android applications and process measures should be
employed for enhanced code understandability [16].

Finally, Ahmad A Saifan [17] offered new equation of
Android Understandability Index which we use in this paper to
determine value of architecture Understandability Index. Little
difference between us and their method is, we directly use
average value of metric parameters instead of calculating it for
each clases.

III. PROPOSED METHOD

In this section, we elucidate the overall design of the
research. Fig. 1 illustrates the key steps involved in conducting
the experiment. These steps align with those previously
outlined in the literature review for assessing the
understandability of MVVM and VIPER architecture.
However, it's noteworthy that we employed distinct tools and
incorporated all Android metrics presented in the literature to
formulate a specific method for measuring the
understandability of Android applications.

Fig. 1. Experiment diagram

A. Building Apps

Our methodology for evaluating the understandability of
MVVM and VIPER involves the creation of two identical
applications with distinct architectures. We developed two
straightforward applications, both featuring the same
functionality of loading data from local JSON files on the Main
Page. When a user taps on an item, it navigates to the detail
view. Additionally, both applications possess the capability to
delete items from the list. A crucial principle of both MVVM
and VIPER is to ensure that the view remains as simple as
possible, avoiding the inclusion of heavy logic in it.

B. MVVM

The Model-View-ViewModel (MVVM) architecture is a
software design pattern widely employed for developing user
interfaces. It divides the application into three key components:
Model, View, and ViewModel. The Model manages data and
business logic, the View handles the user interface, and the
ViewModel acts as a mediator between them. MVVM enhances
code maintainability and scalability by1decoupling the user
interface from the underlying logic. The architecture facilitates
data binding, allowing seamless synchronization between the
View and ViewModel. For a visual representation of the
MVVM architecture, refer to the Fig. 2 and for real project
structure of this architecture in android studio can be seen in
Fig. 3

Fig. 2 MVVM architecture

Fig. 3 MVVM directory Structure

B. VIPER

 The VIPER architecture, standing for View-
InteractorPresenter-Entity-Routing, is a robust design pattern
commonly employed in software development, particularly for
building scalable and maintainable iOS and Android
applications. VIPER decomposes the application into five core
components: View, Interactor, Presenter, Entity, and Routing.
The View is responsible for the user interface, the Interactor
manages business logic and data, the Presenter orchestrates the
communication between the View and Interactor, the Entity
encapsulates data objects, and Routing handles navigation
between modules.

VIPER's modular structure enhances code organization,
making it easier to understand, test, and modify. The explicit
separation of concerns in VIPER contributes to a more

systematic approach to building complex applications. For a
visual depiction of the VIPER architecture refer to the Fig. 4.
Overall project structure used in this experiment can be seen at
Fig. 5. Because VIPER have more abstraction it will be
common to see VIPER have more directory than MVVM.

Fig 4. VIPER architecture

Fig 5. VIPER directory structure

Here are the Android applications based on the MVVM and
VIPER architectures that we utilized as experiments in this
research:

• MVVM Architecture

https://github.com/kurniadi92/android-mvv-java

• VIPER Architecture
https://github.com/kurniadi92/android-viper-java.

Previously our project created using Kotlin, but turns out
MetricReloaded not working well with Kotlin so we need to
rework on it using Java. For list of university, we get it from
locally stored json file. No internet connection required to run
the app. The reason why we have more than one page for this
sample app is because we want to maximize VIPER
implementation of router layer which described as part of the
architecture who handle navigation.

The result of application can be see at Fig. 6. Both VIPER
and MVVM have same look and same functionality. This app
is a simple app that showing university list and then open
university detail when you tap it. No login or authentication
needed since we fetch list from locally stored json.

Fig. 6 Application interface in android emulator

C. Extract Software Metrics

In assessing the understandability metric, we employed two
tools to extract the necessary parameters. By utilizing these two
instruments, we were able to comprehensively measure the
extent to which code can be understood by developers. This
approach allows for a detailed and nuanced analysis of various
facets of understandability in the process of evaluating code
quality.

SonarQube, utilized as a static analysis tool, plays a pivotal
role in the evaluation of software code quality by measuring
both Cyclomatic Complexity and Cognitive Complexity.
Through its robust capabilities, SonarQube provides insights
into the structural intricacies of code, assessing its complexity
and the cognitive load required for comprehension. The
analysis generated by SonarQube aids developers in identifying
potential areas for code improvement, enhancing overall code
maintainability and readability. This comprehensive approach
to static analysis contributes to a more informed and efficient
software development process, aligning with best practices for
ensuring code quality.

MetricReloaded is an invaluable tool for automating source
code metrics in IntelliJ IDEA and IntelliJ Platform IDE. It
provides essential metrics like Lines of Code (LOC) and file
count for all supported languages, with additional tailored
metrics for Java. This tool facilitates a comprehensive analysis
of code complexity, maintainability, and other crucial factors,
enhancing overall code quality understanding within the IntelliJ
development environment. Subsequently, MetricReloaded is
employed to analyze Halstead Complexity (HC), Halstead
Effort (HE), and extract values for calculating the
understandability index.

Subsequently, the results obtained from SonarQube and
MetricReloaded were transferred to an Microsoft Excel file.
For parameters that cannot be obtained from the mentioned
tools, like INT, a manual process is undertaken. This involves
calculating the number of interfaces implemented by each
class. Following this, calculations were conducted to derive the
understandability index results.

D. Calculate Using Understandability Formula

The dataset includes the understandability index, computed
using the formula [17] specifically measures understandability
index by relying solely on android application metrics.

IV. RESULTS

https://github.com/kurniadi92/android-mvv-java
https://github.com/kurniadi92/android-mvv-java
https://github.com/kurniadi92/android-mvv-java
https://github.com/kurniadi92/android-mvv-java
https://github.com/kurniadi92/android-mvv-java
https://github.com/kurniadi92/android-mvv-java
https://github.com/kurniadi92/android-viper-java
https://github.com/kurniadi92/android-viper-java
https://github.com/kurniadi92/android-viper-java
https://github.com/kurniadi92/android-viper-java
https://github.com/kurniadi92/android-viper-java
https://github.com/kurniadi92/android-viper-java

The measurements for each parameter were systematically
collected and meticulously processed utilizing Microsoft Excel.
The resultant data is comprehensively presented in Table I and
Table II and the definition of metrics referring to the research
by A. Saifan, et al [17], facilitating a detailed examination of
the metrics under consideration. This meticulous approach to
measurement and analysis contributes to the accuracy and
reliability of the obtained results, ensuring a thorough
exploration of the specified parameters in the context of the
study.

TABLE I
EXTRACTED SOFTWARE METRICS 1

Arch INT LCOM CBO SUB NOC WMC CSOA MPC DIT

MVVM 3 1 5.56 0 0 3.11 218 7.89 3.11

VIPER 8 1.08 4.92 0 0 2.50 166.50 5.58 2.50

TABLE II

EXTRACTED SOFTWARE METRICS 2

Arch OCAvg CLOC OCMax LOC JF N n Inner

MVVM 1.04 0.56 1.14 21.67 0 41.56 23.78 0.22

VIPER 1 1 1 18.33 0 31.92 19.17 0.17
a. Arch = Architecture

Lastly, in Table III, we present the understandability metric
utilized in this research. This metric is derived from the output
generated by both tools employed in the study. The table not
only includes the raw data obtained from these tools but also
encompasses the calculated Understandability Index (UI). This
index is formulated through a predefined formula, reflecting a
comprehensive evaluation of the codebase's understandability
based on the aggregated metrics.

TABLE III

UNDERSTANDABILITY METRICS

Architecture HC HE CyC CoC UI

MVVM 11.87 3.526.48 28 3 -95.6

VIPER 8.75 2.229.62 28 2 -72.19
b. HC = Halstead Complexity

c. HE = Halstead Effort
d. CyC = Cyclomatic Complexity
e. CoC = Cognintive Complexity

f. UI = Understandability Index

A. Halstead Complexity

The Halstead Complexity metric is designed to correlate
with the level of difficulty in understanding a class. In our
experiment, we observed that MVVM exhibited a higher
complexity compared to VIPER, despite the absence of heavy
logic in both implementations. The complexity values were
11.87 for MVVM and 8.75 for VIPER. This suggests that,
according to the Halstead Complexity metric, MVVM may
present a greater challenge in terms of comprehensibility
compared to VIPER, even in scenarios where intricate logic is
minimal.

B. Halstead Effort

The Halstead Effort metric aims to reflect the level of effort
required to understand a class. In our investigation, VIPER
demonstrated a lower effort in understanding its class compared
to MVVM. This observation aligns with our expectations,
considering that Halstead Effort is typically expected to

correlate with Halstead Complexity (HC). Therefore, the lower
effort required for VIPER's class comprehension suggests that,
according to the Halstead Effort metric, VIPER may present a
more straightforward and less effort-intensive understanding
compared to MVVM.

C. Cyclomatic Complexity

Cyclomatic complexity serves as a quantitative measure
indicating the number of linearly independent paths through a
program. A lower cyclomatic complexity is generally
considered favorable. Interestingly, in our metrics, both
MVVM and VIPER exhibit a tie in this aspect. Our conjecture
is that this tie in results is attributed to the absence of intricate
logic in either implementation, thus resulting in a comparable
cyclomatic complexity. This observation aligns with the
expectation that a lower cyclomatic complexity signifies a more
straightforward and potentially more maintainable codebase.

D. Cognitive Complexity

Cognitive complexity determines the amount of human
effort required to comprehend its internal logic, which results
in a subjective measurement. It’s means the larger the value
means larger effort. For this metrics VIPER win over MVVM.
The reason behind why VIPER have score 2 is probably
because VIPER heavily compose their structure to very small
pieces of object with specific responsibility for each layer. This
means will be unexpected to have View which do a navigation
process because this already handled by router. In other hand,
MVVM still rely on their view to do navigation.

E. Understandability Index

The Understandability Index serves as a crucial indicator
gauging the comprehensibility of a class or project, with
negative values indicating lower understandability. In our
experiment, VIPER demonstrated a superior Understandability
Index with -72.19, compared to MVVM with -95.6. This
composite index takes into account various factors, including
encapsulation, coupling, abstraction, cohesion, polymorphism,
complexity, and design. The notable difference in
Understandability Index values suggests that VIPER exhibits a
more understandable structure, attributed to favorable factors
such as better encapsulation, reduced coupling, effective
abstraction, improved cohesion, and a well-designed approach.

V. CONSLUSION

 Prior to our experiment which builds upon very basic
implementation of MVVM and VIPER, we can conclude that
VIPER have better understandability in GUI Architectural
design pattern. This is due to fact that VIPER have better result
in four from our five metrics. VIPER with it’s abstraction and
layers give better understandability regarding of role and
structure of the project. But this not means MVVM is very bad
compared to VIPER. Our result shows there are just little
different between MVVM and VIPER cognitive complexity. So
even if VIPER have better understandability, MVVM is not bad
too because they just have very little margin difference.

 In this study, we focused exclusively on measuring one quality
attribute, namely Understandability, within the MVVM and
VIPER architectures. Future research endeavors are
encouraged to explore the measurement of additional quality
attributes to offer a more comprehensive evaluation of software
architectures. Additionally, this study was conducted on a
relatively straightforward codebase. It is imperative for
subsequent research to extend its scope to more complex
codebases, with the challenge of ensuring the equivalence of
functionalities across applications. This is essential to

guarantee a fair and unbiased experimental environment,
enabling a nuanced examination of how architectural choices
impact various quality attributes in real-world, intricate
software systems.

REFERENCES

[1] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vasquez, D.

Poshyvanyk, and R. Oliveto, “Automatically assessing code

understandability: How far are we?,” in ASE 2017 - Proceedings of the

32nd IEEE/ACM International Conference on Automated Software

Engineering, 2017. doi: 10.1109/ASE.2017.8115654.

[2] B. Wisnuadhi, G. Munawar, and U. Wahyu, “Performance Comparison

of Native Android Application on MVP and MVVM,” 2020. doi:

10.2991/aer.k.201221.047.
[3] H. A. Epiloksa, D. S. Kusumo, and M. Adrian, “Effect Of MVVM

Architecture Pattern on Android Based Application Performance,”

JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 4, 2022,

doi: 10.30865/mib.v6i4.4545.
[4] N. Akhtar and S. Ghafoor, “Analysis of Architectural Patterns for

Android Development,” Conference: Analysis of Architectural Patterns

for Android development-SDA, vol. 1, no. 1, 2021.
[5] H. K. Jun and M. E. Rana, “Evaluating the Impact of Design Patterns on

Software Maintainability: An Empirical Evaluation,” in 2021 3rd

International Sustainability and Resilience Conference: Climate

Change, Institute of Electrical and Electronics Engineers Inc., 2021, pp.

539–548. doi: 10.1109/IEEECONF53624.2021.9668025.
[6] A. Wilson, F. Wedyan, and S. Omari, “An Empirical Evaluation and

Comparison of the Impact of MVVM and MVC GUI Driven
Application Architectures on Maintainability and Testability,” in 2022

International Conference on Intelligent Data Science Technologies and

Applications, IDSTA 2022, Institute of Electrical and Electronics
 Engineers Inc., 2022, pp. 101–108. doi:

10.1109/IDSTA55301.2022.9923083.
[7] A. Rahman Fajri and S. Rani, “Penerapan Design Pattern MVVM dan

Clean Architecture pada Pengembangan Aplikasi Android (Studi Kasus:

Aplikasi Agree Partner),” Official Scientific Journals of Universitas

Islam Indonesia, 2022.
[8] M. Alenezi, “Software Architecture Quality Measurement Stability and

Understandability,” 2016. [Online]. Available:
www.ijacsa.thesai.org

[9] Sholiq, R. A. Auda, A. P. Subriadi, A. Tjahyanto, and A. D. Wulandari,

“Measuring software quality with usability, efficiency, and portability

characteristics,” in IOP Conference Series: Earth and Environmental

Science, IOP Publishing Ltd, Apr. 2021. doi:

10.1088/17551315/704/1/012039.
[10] Y. Tashtoush, M. Al-Maolegi, and B. Arkok, “The Correlation among

Software Complexity Metrics with Case Study,” 2014.
[11] M. Saif Himayat and J. Ahmad, “Software Understandability using

Software Metrics: An Exhaustive Review,” International Journal of

Engineering and Management Research, vol. 13, no. 2, 2023, doi:

10.31033/ijemr.13.2.31.
[12] M. M. Barón, M. Wyrich, and S. Wagner, “An empirical validation of

cognitive complexity as a measure of source code understandability,” in

International Symposium on Empirical Software Engineering and

Measurement, IEEE Computer Society, Oct. 2020. doi:

10.1145/3382494.3410636.
[13] G. Rotoloni, “Analysis of the performance of Cognitive Complexity and

evaluation of alternative metrics and solutions using real

understandability data. Analysis of the performance of Cognitive

Complexity and evaluation of alternative metrics and solutions using real

understandability data.” [Online]. Available:
https://www.researchgate.net/publication/366569694

[14] D. R. Wijendra and K. P. Hewagamage, “Application of the Refactoring

to the Understandability and the Cognitive Complexity of a Software,”

in 2022 IEEE 7th International conference for Convergence in

Technology, I2CT 2022, Institute of Electrical and
 Electronics Engineers Inc., 2022. doi:

10.1109/I2CT54291.2022.9824082.
[15] S. Rajesh and A. Chandrasekar, “Metrics measurement model: To

measure the object oriented design metrics,” in ICoAC 2015 - 7th

International Conference on Advanced Computing, Institute of Electrical

and Electronics Engineers Inc., Sep. 2016. doi:

10.1109/ICoAC.2015.7562793.
[16] L. Lavazza, S. Morasca, and M. Gatto, “An empirical study on software

understandability and its dependence on code characteristics,” Empir

Softw Eng, vol. 28, no. 6, Nov. 2023, doi: 10.1007/s10664-023-10396-7.

[17] A. A. Saifan, H. Alsghaier, and K. Alkhateeb, “Evaluating the

Understandability of Android Applications,” International Journal of

Software Innovation, vol. 6, no. 1, pp. 44–57, Jan. 2018, doi:
10.4018/IJSI.2018010104.

